

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

DEPARTMENT OF CIVIL ENGINEERING **SESSION: 2023-2024 (EVEN SEMESTER)** I SESSIONAL TEST QUESTION PAPER

SET-B

USN

Degree

B.E

Branch

Civil Engineering

Course Title

Design of Pre stressed concrete Elements

Duration 90 Minutes Semester: VIII

Course Code: 18CV81

Date: 12/04/2024

Max Marks: 30

Q No.	Note: Answer ONE full question from Question	Marks	K- Level	CO mapping	
	PART-A				
1(a)	Explain the necessity of high strength concrete and high strength steel is used in Pre stress concrete.				
(b)	Explain the advantages of PSC over RCC.	K2 Understanding	CO1		
(c)	Explain the various types of losses in Pre-Tensioning system.	5	K2 Understanding	CO2	
	OR			, - h	
2(a)	Explain with sketch the Hoyer's Long line system of pre-tensioning.	5	K2 Understanding	CO1	
(b)	Explain the difference between Pre-Tensioning and Post Tensioning system.	5	K2 Understanding	COI	
(c)	Explain the various types of losses in Post-Tensioning system.	5	K2 Understanding	CO2	
	PART-B				
3(a)	A prestressed concrete beam made of T section has a flange of (1000mmX150mm) and web of (200X800mm). Beam supports super imposed load of 180kN/m over a simply supported over a span of 8m. If the prestressing force in the tendon is 6200kN at mid span and is located at a distance of 500mm from soffit. Determine the resultant stress at midspan for the following case. I) Prestress+Self-weight ii) Prestress+Self-weight+Live load Assume Density of concrete is 24kN/m ³	10	K3 Applying	CO1	
(b)	A simply supported pre stressed concrete beam spanning over 10m is of rectangular section 200mm wide and 300mm deep is prestressed with wires area=320mm ² , locate at a constant eccentricity of 50mm and carrying a initial stress of 1000N/mm ² . The beam is pretensioned. Determine the loss of stress in wires using the following data. Es=210kN/mm ² , Ec=35kN/mm ² , Relaxation of steel stress=5% of initialstress, shrinkage of concrete=300*10-6, Creep coefficient=1.6.	5	K3 Applying	CO2	

	OR			
4(a)	A prestressed concrete beam of section 200mm wide by 300mm deep is used over a effective span of 6m to support an imposed load of 4kN/m. The density of concrete is 24kN/m³. Determine the magnitude of concentric prestressing force necessary for zero fibre stress at the soffit when the beam is fully loaded.	10	K3 Applying	COI
(b)	A pre stressed concrete beam spanning over 10.5 m is of rectangular section 300X600 is prestressed with wires area=800mm²,locat at a constant eccentricity of 100mm and carrying a initial stress of 1050N/mm². The beam is pretensioned. Determine the loss of stress in wires using the following data. E _s =210kN/mm², E _c =35kN/mm², Relaxation of steel stress=2.5% of initial stress, shrinkage of concrete=300*10-6, Creep coefficient=1.6.	5	K3 Applying	CO2

Professor & Head Dept. of Civil Engineering K.S. Group of Institutions K.S. School of Engineering & Management Bangalore-560 062.

IQAC-Coordinator

Dr. K. RAMA NARASIMHA Principal/Director

K S School of Engineering and Managem Bengaluru - 560 109

K.S. GROUP OF INSTITUTIONS K.S. SCHOOL OF ENGINEERING & MANAGEMENT

15, Mallasandra, Near Vajarahalli, Off. Kanakapura Road, Bengaluru- 560 109 www.kssem.edu.in

BLUE BOOK

Name of the Student: Nida Manhoor Jeli										
Class / Sem : 8th Branch: Civil										
USN :	1	K	6	2	0	C	7	O	0	5

SUBJECT: Design of Pre-stressed concrete elements

Subject Code : \ \ & C \ & \

MAXIMUM MARKS:

Test	1	11 111		Average Marks Obtained
Date	12-4-24	6-5-24 13-5-24		30 +10
Marks Obtained	30	30	30	30
Signature of the Student	Nida	Nigla	Nida	0:38
Initials of Room Supervisor	rQ	Jue .	gip	101.5.
Initials of Faculty	jo	jue	200	M

NAME OF FACULTY: Dr. Nama My

SIGNATURE:

SIGNATURE OF H.O.D.

wakelle

K S SCHOOL OF ENGINEERING AND MANAGEMENT

First Internal test

Q. No	Marks	СО	Q. No	Marks	СО	СО	Total
1(a)	10	1	3(a)			1	9
1(b)	5	2	3(b)			1	20
1(c)			3(c)				10
	OR			OR		2	
2(a)			4(a)	10)		
2(b)			4(b)	5	2		
2(c)			4(c)			Grand Total	30

Second Internal test

Q. No	Marks	СО	Q. No	Marks	со	СО	Total
1(a)	10	3	3(a)				17
1(b)	5	2	3(b)			2	[0
1(c)			3(c)			~	
OR		OR			3	20	
2(a)			4(a)	10	3		
2(b)			4(b)	>	2		
2(c)			4(c)			Grand Total	.30

Third Internal test

Q. No	Marks	СО	Q. No	Marks	СО	со	Total
1(a)	10	4	3(a)			* .	
1(b)	5	5	3(b)			4	20
1(c)			3(c)			-	10
	OR			OR		>	10
2(a)			4(a)	10	9		
2(b)			4(b)	2	5		
2(c)			4(c)			Grand Total	30

Signature of the Staff