SEM

0

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF CIVIL ENGINEERING SESSION: 2023-2024 (EVEN SEMESTER) I SESSIONAL TEST QUESTION PAPER SET-B

			USN							
Degree	:	B.E			Se	mes	ter	:	VIII	
Branch	:	Civil Engineering		С	ours	e Co	de	:	18CV81	
Course Title	:	Design of Pre stressed concrete Elements				D	ate	:	12/04/2024	
Duration	:	90 Minutes		ľ	Max	Mar	·ks	:	30	

Note: Answer ONE full question from each part.						
Q No.	Question	Marks	K- Level	CO mapping		
	PART-A					
1(a)	Explain the necessity of high strength concrete and high strength steel is used in Pre stress concrete.	5	K2 Understanding	CO1		
(b)	Explain the advantages of PSC over RCC.	5	K2 Understanding	CO1		
(c)	Explain the various types of losses in Pre-Tensioning system.	5	K2 Understanding	CO2		
	OR					
2(a)	Explain with sketch the Hoyer's Long line system of pre-tensioning.	5	K2 Understanding	CO1		
(b)	Explain the difference between Pre-Tensioning and Post Tensioning system.	5	K2 Understanding	CO1		
(c)	Explain the various types of losses in Post-Tensioning system.	5	K2 Understanding	CO2		
	PART-B]			
3(a)	A prestressed concrete beam made of T section has a flange of (1000mmX150mm) and web of (200X800mm).Beam supports super imposed load of 180kN/m over a simply supported over a span of 8m.If the prestressing force in the tendon is 6200kN at mid span and is located at a distance of 500mm from soffit. Determine the resultant stress at midspan for the following case. 1)Prestress+Self-weight ii)Prestress+Self-weight+Live load Assume Density of concrete is 24kN/m ³	10	K3 Applying	COI		
(b)	A simply supported pre stressed concrete beam spanning over 10m is of rectangular section 200mm wide and 300mm deep is prestressed with wires area=320mm ² , locate at a constant eccentricity of 50mm and carrying a initial stress of 1000N/mm ² . The beam is pretensioned. Determine the loss of stress in wires using the following data. Es=210kN/mm ² , Ec=35kN/mm ² , Relaxation of steel stress=5% of initial stress, shrinkage of concrete=300*10 ⁻⁶ , Creep coefficient=1.6.	5	K3 Applying	CO2		

	OR			
4(a)	A prestressed concrete beam of section 200mm wide by 300mm deep is used over a effective span of 6m to support an imposed load of 4kN/m. The density of concrete is 24kN/m ³ .Determine the magnitude of concentric prestressing force necessary for zero fibre stress at the soffit when the beam is fully loaded.	10	K3 Applying	C01
(b)	A pre stressed concrete beam spanning over 10.5 m is of rectangular section 300X600 is prestressed with wires area= 800 mm ² ,locat at a constant eccentricity of 100mm and carrying a initial stress of 1050N/mm ² . The beam is pretensioned. Determine the loss of stress in wires using the following data. E _s = 210 kN/mm ² , E _c = 35 kN/mm ² , Relaxation of steel stress= 2.5% of initial stress, shrinkage of concrete= $300*10-6$, Creep coefficient= 1.6 .	5	K3 Applying	CO2

Incharge

horelle

HOD CV IQA Professor & Head Dept. of Civil Engineering K.S. Group of Institutions K.S. School of Engineering & Management Bangalore-560 062.

IQAC- Coordinator

Principal

 \bigcirc

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Managem Bengaluru - 560 109