Data Structures and Its Applications Subject Code:18CS32
 No. of Lecture Hours/week: 4
 Total No.of Lecture Hours:50
 IA Marks: 40
 Exam Marks:60

Mrs. Swathi Darla
Assistant Professor

Dept Of CSE

Module-1

Introduction

to

Data Structures

Definition

Data structure is representation of the logical relationship existing between individual elements of data.
In other words, a data structure is a way of organizing all data items that considers not only the elements stored but also their relationship to each other.

Introduction

Data structure affects the design of both structural \& functional aspects of a program.
Program=algorithm + Data Structure You know that a algorithm is a step by step procedure to solve a particular function.

Introduction

That means, algorithm is a set of instruction written to carry out certain tasks \& the data structure is the way of organizing the data with their logical relationship retained.
To develop a program of an algorithm, we should select an appropriate data structure for that algorithm. Therefore algorithm and its associated data structures from a program.

Classification of Data Structure

Data structure are normally divided into two broad categories:

- Primitive Data Structure
- Non-Primitive Data Structure

Classification of Data Structure

Classification of Data Structure

Primitive Data Structure

There are basic structures and directly operated upon by the machine instructions.
In general, there are different representation on different computers.
Integer, Floating-point number, Character constants, string constants, pointers etc, fall in this category.

Non-Primitive Data Structure

There are more sophisticated data structures.
These are derived from the primitive data structures.
The non-primitive data structures emphasize on
structuring of a group of homogeneous (same type) or
heterogeneous (different type) data items.

Non-Primitive Data Structure

Lists, Stack, Queue, Tree, Graph are example of nonprimitive data structures.
The design of an efficient data structure must take operations to be performed on the data structure.

Non-Primitive Data Structure

The most commonly used operation on data structure are broadly categorized into following types:

- Create
- Selection
- Updating
- Searching
- Sorting
- Merging
- Destroy or Delete

Different between them

A primitive data structure is generally a basic structure that is usually built into the language, such as an integer, a float.
A non-primitive data structure is built out of primitive data structures linked together in meaningful ways, such as a or a linked-list, binary search tree, AVL Tree, graph etc.

Description of various Data Structures : Arrays

An array is defined as a set of finite number of homogeneous elements or same data items.
It means an array can contain one type of data only, either all integer, all float-point number or all character.

Arrays

Simply, declaration of array is as follows: int $\operatorname{arr}[10]$
Where int specifies the data type or type of elements arrays stores.
"arr" is the name of array \& the number specified inside the square brackets is the number of elements an array can store, this is also called sized or length of array.

Arrays

Following are some of the concepts to be remembered about arrays:

- The individual element of an array can be accessed by specifying name of the array, following by index or subscript inside square brackets.
- The first element of the array has index zero[0]. It means the first element and last element will be specified as:arr[0] \& arr[9] Respectively.

Arrays

- The elements of array will always be stored in the consecutive (continues) memory location.
- The number of elements that can be stored in an array, that is the size of array or its length is given by the following equation: (Upperbound-lowerbound)+1

Arrays

\circ For the above array it would be $(9-0)+1=10$, where 0 is the lower bound of array and 9 is the upper bound of array.

- Array can always be read or written through loop. If we read a one-dimensional array it require one loop for reading and other for writing the array.

Arrays

${ }^{\circ}$ For example: Reading an array For(i=0;i<=9;i++) scanf("\%d",\&arr[i]);

- For example: Writing an array For(i=0;i<=9;i++) printf("\%d",arr[i]);

Arrays

\circ If we are reading or writing two-dimensional array it would require two loops. And similarly the array of a N dimension would required N loops.

- Some common operation performed on array are:
- Creation of an array
- Traversing an array

Arrays

- Insertion of new element
- Deletion of required element
- Modification of an element
- Merging of arrays

Lists

A lists (Linear linked list) can be defined as a collection of variable number of data items.
Lists are the most commonly used non-primitive data structures.
An element of list must contain at least two fields, one for storing data or information and other for storing address of next element.
As you know for storing address we have a special data structure of list the address must be pointer type.

Lists

Technically each such element is referred to as a node, therefore a list can be defined as a collection of nodes as show bellow:

[Linear Liked List]

Head

Lists

Types of linked lists:

- Single linked list
- Doubly linked list
- Single circular linked list
- Doubly circular linked list

Stack

A stack is also an ordered collection of elements like arrays, but it has a special feature that deletion and insertion of elements can be done only from one end called the top of the stack (TOP)
Due to this property it is also called as last in first out type of data structure (LIFO).

Stack

It could be through of just like a stack of plates placed on table in a party, a guest always takes off a fresh plate from the top and the new plates are placed on to the stack at the top.
It is a non-primitive data structure.
When an element is inserted into a stack or removed from the stack, its base remains fixed where the top of stack changes.

Stack

Insertion of element into stack is called PUSH and deletion of element from stack is called POP.
The bellow show figure how the operations take place on a stack:

Stack

The stack can be implemented into two ways:

- Using arrays (Static implementation)
- Using pointer (Dynamic implementation)

Queue

Queue are first in first out type of data structure (i.e. FIFO)
In a queue new elements are added to the queue from one end called REAR end and the element are always removed from other end called the FRONT end.
The people standing in a railway reservation row are an example of queue.

Queue

Each new person comes and stands at the end of the row and person getting their reservation confirmed get out of the row from the front end. The bellow show figure how the operations take place on a stack:

Queue

The queue can be implemented into two ways:

- Using arrays (Static implementation)
- Using pointer (Dynamic implementation)

Trees

A tree can be defined as finite set of data items (nodes). Tree is non-linear type of data structure in which data items are arranged or stored in a sorted sequence.
Tree represent the hierarchical relationship between various elements.

Trees

In trees:
There is a special data item at the top of hierarchy called the Root of the tree.
The remaining data items are partitioned into number of mutually exclusive subset, each of which is itself, a tree which is called the sub tree.
The tree always grows in length towards bottom in data structures, unlike natural trees which grows upwards.

Trees

The tree structure organizes the data into branches, which related the information.

Graph

Graph is a mathematical non-linear data structure capable of representing many kind of physical structures.
It has found application in Geography, Chemistry and Engineering sciences.
Definition: A graph $G(V, E)$ is a set of vertices V and a set of edges E.

Graph

An edge connects a pair of vertices and many have weight such as length, cost and another measuring instrument for according the graph.
Vertices on the graph are shown as point or circles and edges are drawn as arcs or line segment.

Graph

Example of graph:

[a] Directed \&

[b] Undirected Graph

Graph

Types of Graphs:

- Directed graph
- Undirected graph
- Simple graph
- Weighted graph
- Connected graph
- Non-connected graph

Arrays and Structures

The array as an abstract data type
Structures and Unions
The polynomial Abstract Data Type
The Sparse Matrix Abstract Data Type
The Representation of Multidimensional Arrays

2.1 The array as an ADT

Arrays

- Array: a set of pairs, <index, value>
- data structure
- For each index, there is a value associated with that index.
- representation (possible)
- Implemented by using consecutive memory.
- In mathematical terms, we call this a correspondence or a mapping.

2.1 The array as an ADT

When considering an ADT we are more concerned with the operations that can be performed on an array.

- Aside from creating a new array, most languages provide only two standard operations for arrays, one that retrieves a value, and a second that stores a value.
- Structure 2.1 shows a definition of the array ADT
- The advantage of this ADT definition is that it clearly points out the fact that the array is a more gral structure than "a consecutive set of mémory loo

2.1 The array as an ADT

structure Array is

objects: A set of pairs <index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, $\{0, \cdots, n-1\}$ for one dimension, $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2$, 1), $(2,2)\}$ for two dimensions, etc.

functions:

for all $A \in$ Array, $i \in$ index, $x \in$ item, j, size \in integer
Array Create (j, list) $\quad::=\quad$ return an array of j dimensions where list is a j-tuple whose i th element is the the size of the i th dimension. Items are undefined.
Item Retrieve $(A, i) \quad::=\quad$ if $(i \in$ index $)$ return the item associated with index value i in array A else return error
Array Store $(A, i, x) \quad::=\quad$ if $(i$ in index) return an array that is identical to array A except the new pair $\langle i, x\rangle$ has been inserted else return error.
end Array
Structure 2.1: Abstract Data Type Array

2.1 The array as an ADT

Arrays in C

- int list[5], *plist[5];
- list[5]: (five integers) list[0], list[1], list[2], list[3], list[4]
- *plist[5]: (five pointers to integers)
- plist[0], plist[1], plist[2], plist[3], plist[4]
- implementation of 1-D array
list[0] base address $=\alpha$
list[1] $\quad \alpha+$ sizeof(int)
list[2] $\quad \alpha+2 *$ sizeof(int)
list[3] $\quad \alpha+3$ *sizeof(int)
list[4] $\quad \alpha+4 *$ sizeof(int)

2.1 The array as an ADT

Arrays in C (cont'd)

- Compare int *list 1 and int list2[5] in C.

Same:
Difference:

- Notations:
list2
(list2 + i)
*(list2 + i)
list 1 and list2 are pointers. list2 reserves five locations.
- a pointer to list2[0]
- a pointer to list2[i] (\&list2[i])
- list2[i]

2.1 The array

Example:

1-dimension array addressing

- int one[] = \{0, 1, 2, 3, 4\};
- Goal: print out address and value
- void print 1 (int *ptr, int rows)\{
/* print out a one-dimensional array using a pointer */ int i;
printf("Address Contents $\backslash \mathrm{n}$ ");
for ($\mathrm{i}=0$; i < rows; $\mathrm{i}++$) printf("\%8u\%5d $\backslash n "$, ptr+i, *(ptr+i));
printf("\n");
\}

2.2 Structures and Unions

2.2.1 Structures (records)

- Arrays are collections of data of the same type. In C there is an alternate way of grouping data that permit the data to vary in type.
- This mechanism is called the struct, short for structure.
- A structure is a collection of data items, where each item is identified as to its type and name.
struct \{

```
char name[10];
int age;
float salary;
} person;
```

```
strcpy (person.name,"james");
person.age = 10;
person.salary = 35000;
```


2.2 Structures and Unions

Create structure data type

- We can create our own structure data types by using the typedef statement as below:

```
typedef struct human-being { or typedef struct {
    char name[10];
    int age;
    float salary;
    };
```

or
typedef struct \{ char name[10];
int age;
float salary;
\} human-being;

- I his says that human_being is the name of the type defined by the structure definition, and we may follow this definition with declarations of variables such as:
human_being person1, person2;

2.2 Structures and Unions

- We can also embed a structure within a structure.

```
typedef struct {
    int day;
    int year;
    } date;
typedef struct human-being {
    char name[10];
    int age;
    float salary;
    date dob;
    } ;
```

- A person born on February 11, 1994, would have have values for the date struct set as

```
person1.dob.month = 2;
person1.dob.day = 11;
person1.dob.year = 1944;
```


2.2 Structures and Unions

- A union declaration is similar to a structure.
- The fields of a union must share their memory space.
- Only one field of the union is "active" at any given time - Example: Add fields for male and female.

```
person1.sex_info.sex = male;
person1.sex_info.u.beard = FALSE;
and
person2.sex_info.sex = female;
person2.sex_info.u.children =4;
```

```
    typedef struct sex-type {
    enum tag-field {female, male} sex;
    union {
        int children;
        int beard ;
        } u;
    };
typedef struct human-being {
    char name[10];
    int age;
    float salary;
    date dob;
    sex-type sex-info;
    };
human-being person1, person2;
```


2.2 Structures and Unions

2.2.3 Internal implementation of structures

- The fields of a structure in memory will be stored in the same way using increasing address locations in the order specified in the structure definition.
- Holes or padding may actually occur
- Within a structure to permit two consecutive components to be properly aligned within memory
- The size of an object of a struct or union type is the amount of storage necessary to represent the largest component, including any padding that may be required.

2.2 Structures and Unions

2.2.4 Self-Referential Structures

- One or more of its components is a pointer to itself.
- typedef struct list \{ char data; list "link; \}

Construct a list with three nodes item1.link=\&item2; item2.link=\&item3; malloc: obtain a node (memory) free: release memory

- list item1, item2, item3; item 1 .data='a'; item3: data =" 'b";
 item 1.link=item2.link=item3.link=NULL;

2.3 The polynomial ADT

Ordered or Linear List Examples

- ordered (linear) list: (item1, item2, item3, ..., itemn)
- (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
- (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)
- (basement, lobby, mezzanine, first, second)
- (1941, 1942, 1943, 1944, 1945)
- (a1, a2, a3, ..., an-1, an)

2.3 The polynomial ADT

Operations on Ordered List

- Finding the length, n, of the list.
- Reading the items from left to right (or right to left).
- Retrieving the i 'th element.
- Storing a new value into the i'th position.
- Inserting a new element at the position i, causing elements numbered $i, i+1, \ldots, n$ to become numbered $i+1, i+2, \ldots, n+1$
- Deleting the element at position i, causing elements numbered $i+1, \ldots, n$ to become numbered $i, i+1, \ldots, n-1$
Implementation
- sequential mapping (1)~(4)
non-sequential mapping (5)~(6)

2.3 The polynomial ADT

Polynomial examples:

- Two example polynomials are:
- $A(x)=3 x^{20}+2 x^{5}+4$ and $B(x)=x^{4}+10 x^{3}+3 x^{2}+1$
- Assume that we have two polynomials, $A(x)=\Sigma a_{i} x^{i}$ and $B(x)=\Sigma b_{i} x^{i}$ where x is the variable, a_{i} is the coefficient, and i is the exponent, then:
- $A(x)+B(x)=\Sigma\left(a^{i}+b^{i}\right) x^{i}$
- $A(x) \cdot B(x)=\Sigma\left(a^{i} x^{i} \cdot \Sigma\left(b^{j} x^{j}\right)\right)$
- Similarly, we can define subtraction and division on polynomials, as well as many other operations.

2.3 The polynomial ADT

An ADT definition of a polynomial

2.3 The polynomial ADT

There are two ways to create the type polynomial in C
Representation I

- define MAX_degree 101 /*MAX degree of polynomial+1*/ typedef struct\{
int degree;
float coef [MAX_degree];
\}polynomial;

Polynomial Addition

```
/* d =a + b, where a, b, and d are polynomials */
d = Zero()
while (! IsZero(a) && ! IsZero(b)) do {
    switch COMPARE (Lead_Exp(a), Lead_Exp(b)) {
            case - 1:d =
                Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
            b = Remove(b, Lead_Exp(b));
            break;
            case 0: sum = Coef (a, Lead_Exp (a)) + Coef ( b, Lead_Exp(b));
            if (sum) {
                    Attach (d, sum, Lead_Exp(a));
            }
            a = Remove(a,Lead_Exp(a));
            b = Remove(b ,Lead_Exp(b));
            break;
    case 1: d'=
            Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));
            a = Remove(a, Lead_Exp(a));
    }
}

\subsection*{2.3 The polynomial ADT}

\section*{Representation II}
- MAX_TERMS 100 /*size of terms array*/ typedef struct\{ float coef; int expon;
\}polynomial; polynomial terms [MAX_TERMS];
int avail \(=0\);

\subsection*{2.3 The polynomial ADT}

Use one global array to store all polynomials - Figure 2.2 shows how these polynomials are stored in the array terms.
\[
\begin{aligned}
& \mathrm{A}(x)=2 x^{1000}+1 \\
& \mathrm{~B}(x)=x^{4}+10 x^{3}+3 x^{2}+1
\end{aligned}
\]
\begin{tabular}{ll} 
specification & \begin{tabular}{l} 
represe \\
poly
\end{tabular} \\
A & \(<0,1>\) \\
B & \(<2,5>\)
\end{tabular}
storage requirements: start, finish, \(2 *\) (finish-start+1)
non-sparse: twice as much as Representation I when all the items are nonzero
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & starta & finisha & start & & & finishb & avail \\
\hline & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline coef & 2 & 1 & 1 & 10 & 3 & 1 & \\
\hline \(\exp\) & 1000 & 0 & 4 & 3 & 2 & 0 & \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

Figure 2.2: Array representation of two polynomials

\subsection*{2.3 The polynomial ADT}

\author{
We would now like to write a C function that adds two polynomials, \(A\) and \(B\), represented as above to obtain \(D\) \\ \(=A+B\). \\ - To produce \(D(x)\), padd (Program 2.5) adds \(A(x)\) and \(B(x)\) term by term.
}

Analysis: \(\mathrm{O}(\mathrm{n}+\mathrm{m})\) where \(\mathrm{n}(\mathrm{m})\) is the number nonzeres.in \(A(B)\).
```

void padd(int starta,int finisha,int startb, int finishb,
int *startd,int *finishd)
/* add A (x) and B(x) to obtain D(x) */
float coefficient;
*startd = avail;
while (starta <= finisha \&\& startb <= finishb)
switch(COMPARE{terms[starta]. expon,
terms[startb].expon)) (
case -1: /* a expon < b expon */
attach(terms[startb].coef,terms[startb].expon)
st.artb++;
break;
case 0: /* equal exponents */
coefficient = terms[starta].coef +
terms[startb].coef;
if (coefficient)
attach(coefficient,terms[starta].expon);
starta++;
startb++;
break;
case 1: /* a expon > b expon */
attach(terms[starta].coef, terms[starta] .expon)
starta++;
/* add in remaining terms of A(x) */
for(; starta <= finisha;; starta++)
attach(terms[starta]. coef, terms[starta] .expon);
/* add in remaining terms of B(x) */
for(; startb <= finishb; startb++)
attach(terms[startb].coef, terms[startb] .expon);
* finishd = avail-1;

```
r

\subsection*{2.3 The polynomial ADT}
```

void attach(float coefficient, int exponent)
{
/* add a new term to the polynomial */
if (avail >= MAX-TERMS) {
fprintf(stderr,"Too many terms in the polynomial\n");
exit(1);
}
terms[avail].coef = coefficient;
terms[avail++].expon = exponent;
}

```

Program 2.6: Function to add a new term

\section*{Problem:}

Compaction is required when polynomials that are no longer needed. (data movement takes time.)

\subsection*{2.4 The sparse matrix ADT}

\subsection*{2.4.1 Introduction}
- In mathematics, a matrix contains \(m\) rows and \(n\) columns of elements, we write \(m \times n\) to designate a matrix with \(m\) rows and \(n\) columns.
\begin{tabular}{llll} 
& \multicolumn{2}{c}{\(\operatorname{col} 0\)} & \(\operatorname{col} 1\) \\
\(\operatorname{col} 2\) \\
row 0 & {\(\left[\begin{array}{rrr}-27 & 3 & 4 \\
\text { row 1 } & 6 & 82\end{array}\right.\)} & -2 \\
row 2 & 109 & -64 & 11 \\
row 3 \\
row 4 & 12 & 8 & 9 \\
48 & 27 & 47
\end{tabular}\(]_{5 * 3}\)


Figure 2.3: Two matrices

\subsection*{2.4 The sparse matrix ADT}

The standard representation of a matrix is a two dimensional array defined as a[MAX_ROWS][MAX_COLS].
- We can locate quickly any element by writing \(a[i][j]\) Sparse matrix wastes space
- We must consider alternate forms of representation.
- Our representation of sparse matrices should store only nonzero elements.
- Each element is characterized by <row, col, value>.

\subsection*{2.4 The sparse matrix ADT}

\section*{Structure 2.3 contains our specification of the matrix ADT. \\ - A minimal set of operations includes matrix creation, addition, multiplication, and transpose.}
structure Sparse_Matrix is
objects: a set of triples, <row, column, value>, where row and column are integers and form a unique combination, and value comes from the set item.
functions:
for all \(a, b \in\) Sparse_Matrix, \(x \in\) item, \(i, j\), max_col, max_row \(\in\) index
Sparse_Matrix Create(max_row, max_col) ::=
return a Sparse_Matrix that can hold up to max_items \(=\) max_row \(\times\) max_col and whose maximum row size is max_row and whose maximum column size is max_col.
Sparse_Matrix Transpose \((a)\) ::=

Sparse_Matrix \(\operatorname{Add}(a, b)::=\)
return the matrix produced by interchanging the row and column value of every triple.
if the dimensions of \(a\) and \(b\) are the same return the matrix produced by adding corresponding items, namely those with identical row and column values. else return error
Sparse_Matrix Multiply \((a, b)\) ::=
if number of columns in \(a\) equals number of rows in \(b\)
return the matrix \(d\) produced by multiplying \(a\) by \(b\) according to the formula: \(d[i][j]=\) \(\sum(a[i][k] \cdot b[k][j])\) where \(d(i, j)\) is the \((i, j)\) th element
else return error.

\subsection*{2.4 The sparse matrix ADT}

\section*{We implement the Create operation as below:}
```

Sparse_Matrix Create(max_row,max_col) ::=
\#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
int col;
int row;
int value;
} term;
term a[MAX_TERMS];

```

\subsection*{2.4 The sparse matrix ADT}

Figure 2.4(a) shows how the sparse matrix of Figure 2.3(b) is represented in the array \(a\).
- Represented by a two-dimensional array.
- Each element is characterized by <row, col, value>.


\subsection*{2.4 The sparse matrix ADT}

\subsection*{2.4.2 Transpose a Matrix}
- For each row i
- take element <i, j, value> and store it in element \(<\mathrm{j}\), i , value \(>\) of the transpose.
- difficulty: where to put <j, i, value>
\((0,0,15)====>(0,0,15)\)
\((0,3,22)====>(3,0,22)\)
\((0,5,-15)====>(5,0,-15)\)
\((1,1,11)====>(1,1,11)\)
Move elements down very often.
- For all elements in column \(\mathbf{j}\), place element \(<\mathrm{i}, \mathrm{j}\), value \(>\) in element \(<\mathrm{j}, \mathrm{i}\), value \(>\)

\subsection*{2.4 The sparse matrix ADT}

\section*{This algorithm is incorporated in transpose (Program 2.7)}

Scan the array "columns" times.
```

void transpose(term a[], term b[])
/* b is set to the transpose of a */
\
int n,i,j, currentb;
n = a[0].value; /* total number of elements */
b[0].row = a[0].col; /* rows in b = columns in a */
b[0].col = a[0].row; /* columns in b}=\mathrm{ rows in a */
b[0].value = n;
if (n > 0) { /* non zero matrix */
currentb = 1;

```


\subsection*{2.4 The sparse matrix ADT}

Discussion: compared with 2-D array representation

O(columns*elements) vs. O(columns*rows) elements --> columns * rows when non-sparse, O(columns2*rows)
Problem: Scan the array "columns" times.
- In fact, we can transpose a matrix represented as a sequence of triples in \(O\) (columns + elements) time. Solution:
- First, determine the number of elements in each column of the original matrix.
- Second, determine the starting positions of each row
in the transpose matrix.

\subsection*{2.4 The sparse matrix ADT}

\section*{Compared with 2-D array representation:} O(columns+elements) vs. O(columns*rows) elements --> columns * rows O(columns*rows)

\section*{Cost: \\ Additional}
row_terms and starting_pos arrays are required. Let the two arrays row terms and starting_pos be shared.
void fast-transpose(term a[], term b[])
(
/* the transpose of a is placed in b */
int row-terms [MAX-COL], starting-pos[MAX-COL];
int \(i, j\), num-cols \(=a[0] . c o l\), num-terms \(=a[0] . v a l u e ;\) \(\mathrm{b}[0]\). row \(=\) num \(-c o l \mathrm{~s} ; \mathrm{b}[0] . \mathrm{col}=\mathrm{a}[0]\).row; \(\mathrm{b}[0]\). value \(=\) num-terms; if (num-terms > 0) \{ /* nonzero matrix */ for ( \(i=0\); \(i<n u m-c o l s ; ~ i++\) )
                                    for row-terms[i]=0;
                                    for row-terms[i]=0;
                                    row-terms[a[i].col]++;
                                    starting_pos \([0]=1\);
                                    for ( \(\mathrm{i}=1\); \(\mathrm{i}<\) num-cols; \(i++\) )
                                hS starting-pos[i] \(=\)
                starting-pos[i-1] + row-terms[i-1];
            for (i = 1; i <= num-terms; i++) \{
                                \(j=\) starting_pos[a[i].col]++;
                                \(\mathrm{b}[j]\). row \(=\mathrm{a}[\mathrm{i}] . \mathrm{col} ; \quad \mathrm{b}[j] . \mathrm{col}=\mathrm{a}[\mathrm{i}]\). row;
                        b[j]. value \(=\) a[i]. value;

\subsection*{2.4 The sparse matrix ADT}

After the execution of the third for loop, the values of row_terms and starting_pos are:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{[0] [1] [2] [3] [4] [5]} \\
\hline row_terms & \(=2\) & 2 & 2 & 0 & \\
\hline arting_p & 13 & 4 & 6 & & \\
\hline
\end{tabular}
row col value row col value
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(a[0]\) & 6 & 6 & 8 & \(b[0]\) & 6 & 6 & 8 \\
\hline [1] & 0 & 0 & 15 & [1] & 0 & 0 & 15 \\
\hline [2] & 0 & 3 & 22 & [2] & 0 & 4 & 91 \\
\hline [3] & 0 & 5 & -15 & [3] & 1 & 1 & 11 \\
\hline [4] & 1 & 1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{transposie}} & 2 & 1 & 3 \\
\hline [5] & 1 & 2 & & & 2 & 5 & 28 \\
\hline [6] & 2 & 3 & -6 & [6] & 3 & 0 & 22 \\
\hline [7] & 4 & 0 & 91 & [7] & 3 & 2 & -6 \\
\hline [8] & 5 & 2 & 28 & [8] & 5 & 0 & -15 \\
\hline & \multicolumn{2}{|c|}{(a)} & & \multicolumn{3}{|c|}{(b)} & \\
\hline
\end{tabular}

Figure 2.4: Sparse matrix and its transpose stored as triples

\subsection*{2.4 The sparse matrix ADT}
2.4.3 Matrix multiplication
- Definition:

Given \(A\) and \(B\) where \(A\) is \(m \times n\) and \(B\) is \(n \times p\), the product matrix \(D\) has dimension \(m \times p\). Its \(<i, j>\) element is
\[
\text { for } 0 \leq i<m \quad d_{i j}=\sum_{k=0}^{n-1} a_{i k} b_{k j} p
\]
- Example:
\[
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\]

\subsection*{2.4 The sparse matrix ADT}

Sparse Matrix Multiplication
\(\circ\) Definition: \([D]_{m^{*} p}=[A]_{m_{n} n^{*}}[B]_{n * p}\)
- Procedure: Fix a row of A and find all elements in column \(j\) of \(B\) for \(j=0,1, \ldots, p-1\).
- Alternative 1. Scan all of \(B\) to find all elements in \(j\).
- Alternative 2.

Compute the transpose of \(B\).
(Put all column elements consecutively)
- Once we have located the elements of row \(i\) of \(A\) and column \(j\) of \(B\) we just do a merge operation similar to that used in the polynomial addition of 2.2

\subsection*{2.4 The sparse matrix ADT}

General case:
\[
d_{i j}=a_{i 0} * b_{0 j}+a_{i 1} * b_{1 j}+\ldots+a_{i(n-1)} * b_{(n-1) j}
\]
- Array A is grouped by i , and after transpose, array \(B\) is also grouped by \(j\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline a & Sa & & O & Sd & \\
\hline b & Sb & & e & Se & \\
\hline c & Sc & & f & Sf & \\
\hline & & g & Sg & \\
\hline
\end{tabular}

The generation at most: entries ad, ae, af, ag, bd, be, bf, bg, cd, ce, cf, cg

\section*{The sparse matrix ADT}

An Example
\(A=\left[\begin{array}{rrr}1 & 0 & 2 \\ -1 & 4 & 6\end{array}\right] \quad B^{\top}=\left[\begin{array}{rrr}3 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5\end{array}\right] \quad B=\left[\begin{array}{rrr}3 & 0 & 2 \\ -1 & 0 & 0 \\ 0 & 0 & 5\end{array}\right]\)
\(a[0]\) r2 c3 vasl \(b_{t}[0]\) rc3 c3vah \(b[0]\) ro3 c3 vat
[1] wo ol ue1 \(b_{t}[1]\) w0 ol0ue3 b[1]w0 ol0 ue3


[4] \(1 \begin{array}{llllllllll} & 1 & 4 & b_{t}[4] & 2 & 2 & 5 & b[4] & 2 & 2 \\ 5\end{array}\)
[5] 1226

\subsection*{2.4 The sparse matrix ADT}

\section*{The programs 2.9 and 2.10 can obtain the product matrix \(D\) which multiplies matrices \(A\) and \(B\).}
```

void mmult(term al], term b[], term d[])
/* multiply two sparse matrices */
int i, j, column, totalb = b[0].value, totald = 0;
int rows-a = a[0].row, cols-a = a[0].col,
totala = a[0].value; int cols-b = b[0].col,
int row-begin = 1, row = a[1].row, sum = 0;
int new_b[MAX_TERMS][3];
if (cols-a != b[0].row) (
fprintf(stderr,"Incompatible matrices\n");
exit(1);
}
fast_transpose (b, new_b) ;
/* set boundary condition */
a[totala+1].row = rows-a;
new-b[totalb+1].row = cols-b;
new-b[totalb+1].col = 0;
for (i = 1; i <= totala;) {
column = new_b[1].row;
for (}j=1; j<= totalb+1;)

```
    /* multiply row of a by column of \(b\) */
    if (ali]. row ! = row) \{
    storesum(d, \&totald, row, column, \&sum) ;
    i = row-begin;
    for (; new-b[j].row == column; \(j++\) )
        ;
    column \(=\) new \(-\mathrm{b}[j]\). row \(;\)
    \}
    ©else if (new-b[j]. row \(!=\) column) \{
    storesum(d, \&totald, row, column, \&sum);
    \(\mathrm{i}=\) row-begin;
    column \(=\) new - b \([j]\). row;
    -


\subsection*{2.4 The sparse matrix ADT}
```

void storesum(term d[], int *totald, int row, int column,
int *sum)
{
/* if *sum != 0, then it along with its row and column
position is stored as the *totald+1 entry in d */
if (*sum)
if (*totald < MAX-TERMS) {
d[++*totald].row = row;
d[*totald].col = column;
d[*totald].value = *sum;
*sum = 0;
}
else {
fprintf(stderr,"Numbers of terms in product
exceeds %d\n",MAX_TERMS);
exit(1);
}

```
\}

Program 2.10: storesum function

\subsection*{2.4 The sparse matrix ADT}

Analyzing the algorithm
- cols_b * termsrow \(1+\) totalb + cols_b * termsrow2 + totalb +
... +
cols_b * termsrowp + totalb
= cols_b * (termsrow \(1+\) termsrow \(2+\ldots+\)
termsrowp)+
rows_a * totalb
= cols_b * totala + row_a * totalb
O(cols_b * totala + rows_a * totalb)

\subsection*{2.4 The sparse matrix ADT}

Compared with matrix multiplication using array
- for ( \(\mathbf{i}=0 ; \mathrm{i}<\) rows_a; \(\mathbf{i}++\) )
\[
\text { for }(j=0 ; j<\text { cols_b; } j++)\{
\]
sum =0;

\(\mathrm{d}[\mathrm{i}][\mathrm{j}]=\) sum;
- O(rows_a * co
O(cols_b * tot
- optimal case: total_a < rows_a * cols_a total_b < cols_a * cols_b
- worse case:
total_a --> rows_a * cols_a, or total_b \(->\) cols_a * cols_b

\subsection*{2.5 Representation of multidimensional array}

The internal representation of multidimensional arrays requires more complex addressing formula.
- If an array is declared a[upperol][upper \(r_{1}\) ]..[upper \({ }_{n}\) ], then it is easy to see that the number of elements in


Where \(\Pi\) is thè \({ }^{0}\) product of the upper' \({ }_{i}\) 's.
- Example:
- If we declare \(a\) as a[10][10][10], then we require
\(10 * 10 * 10=1000\) units of storage to hold the array.

\subsection*{2.5 Representation of multidimensional array}

Represent multidimensional arrays:
row major order and column major order.
- Row major order stores multidimensional arrays by rows.
- A[upper \({ }_{0}\) [upper \({ }_{1}\) ] as upper \(_{0}\) rows, row \(_{0}\), row \(_{1}, \ldots\), row \(_{\text {uppero- }}\), each row containing upper1 elements.

\subsection*{2.5 Representation of} multidimensional array

Row major order:
Column major order:
A[i][j]: \(\alpha+\mathrm{j}^{*}\) uppero + i

\(\operatorname{row}_{\omega 0-1} \mathrm{~A}[u 0-1][0] \mathrm{A}[u 0-1][1] \ldots \mathrm{A}[u 0-1][u 1-1]\)

\subsection*{2.5 Representation of multidimensional array}

To represent a three-dimensional array, A[upper \({ }^{\prime}\) ][upper \({ }_{1}\) ][upper \({ }_{2}\) ], we interpret the array as uppero two-dimensional arrays of dimension upper \(_{1} \times\) upper \(_{2}\).
- To locate \(a[i j[j][k]\), we first obtain \(\alpha+\) \(i *\) upper \(_{1}{ }^{*}\) upper \(_{2}\) as the address of \(a[i][0][0]\) because there are i two dimensional arrays of size \(u p p e r_{1}{ }^{*} u p p e r_{2}\) preceding this element.
 as the address of \(a[i][j][k]\).

\subsection*{2.5 Representation of multidimensional array}

Generalizing on the preceding discussion, we can obtain the addressing formula for any element \(A\left[i_{o}\right]\left[i_{1}\right] \ldots\left[i_{n-1}\right]\) in an \(n\)-dimensional array declared as: \(A\left[u p p e r_{0}\right]\left[u p p e r_{1}\right] \ldots\left[\right.\) upper \(\left._{n-1}\right]\)
- The address for \(A\left[i_{0}\right]\left[i_{1}\right] \ldots\left[i_{n-1}\right]\) is:
\[
\begin{aligned}
& \alpha+i_{0} \text { upper }_{1} \text { upper }_{2} \ldots \text { upper }_{n-1} \\
& \quad+i_{1} \text { upper }_{2} \text { upper }_{3} \ldots \text { upper }_{n-1}
\end{aligned}
\]
where: \(\left\{\begin{array}{lll}a_{j}=\prod_{k=j+1}^{n-1} \text { upper }_{k} 0 \leq j<n-1 & +i_{2} \text { upper }_{3} \text { upper }_{4} \ldots \text { upper }_{n-1} \\ a_{n-1}=1 & & \\ & & \cdot \\ & & +i_{n-2} \text { upper }_{n-1} \quad=\alpha+\sum_{j=0}^{n-1} i_{j} a_{j} \\ & +i_{n-1}\end{array}\right.\)

\subsection*{2.6 The String Abstract data type}
2.6.1 Introduction

The String: component elements are characters.
- A string to have the form, \(S=s 0, \ldots, s n-1\), where si are characters taken from the character set of the programming language.
- If \(n=0\), then \(S\) is an empty or null string.
- Operations in ADT 2.4, p. 81

\subsection*{2.6 The String Abstract data type}

\section*{ADT String:}
```

structurre String is
olbjects: a finite set of zero or more characters.
functions:
for all }s,t\in\mathrm{ String, }i,j,m\in\mathrm{ non-negative integers
String Null(m) : := meturm a string whose maximumm length is
We write NULL as "".
if)}s\mathrm{ equals }
returom O
else if'}s\mathrm{ precedes }
retumrn - 1
else metummi}+
Boolean IsNull(s) ::= tf (Compare(s,NULL})\mathrm{)
retuarn FALSSE
else returri TRUVE
if (Comapare(s,NULL))
retunm the number of characters in }
ellse retunrn 0.
String Concat(s,t) :
return a string whose elements are those
of }s\mathrm{ followed by those of }
ellse retumri}s
if ((j>0)\&\&\&}(i+j-1)<\mathrm{ Length(s))
return the string containing the characters
of }s\mathrm{ at positions i, i+1, 斻, i+j-1.
else return NULL.

```

\footnotetext{
Structure 2.4: Abstract data type String
}

\subsection*{2.6 The String Abstract data type}

In C, we represent strings as character arrays terminated with the null character \(\backslash 0\).

For instance, suppose we had the strings:
```

\#define MAX_SIZE 100 /*maximum size of string */
char s[MAX-SIZE] = {"dog"};
char t[MAX-SIZE] = {"house"};

```
 be represented internally in memory.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline d & 0 & s & \(\checkmark 0\) & , & - & u & a & e & \0 \\
\hline
\end{tabular}

Figure 2.8: String representation in C

\subsection*{2.6 The String Abstract data type}

Now suppose we want to concatenate these strings together to produce the new string:
- Two strings are joined together by \(\operatorname{strcat}(s, t)\), which stores the result in \(s\). Although \(s\) has increased in length by five, we have no additional space in \(s\) to store the extra five characters. Our compiler handled this problem inelegantly: it simply overwrote the memory to fit in the extra five characters. Since we declared \(t\) immediately after \(s\), this meant that part of the word "house" disappeared.

\subsection*{2.6 The String Abstract data type}

\section*{C string functior}

82 Arrays And Structures
\begin{tabular}{|c|c|}
\hline Function & Description \\
\hline char *srmat(char *clest, char *sre) & concatenate clest and sre strings: return result in clest \\
\hline char *strncat(chat *dest, char *sri, int \(n\) ) & concatenate dest and \(n\) characters from sre; return result in dest \\
\hline char *stremp(char *str1, char *str-2) & \begin{tabular}{l}
compare two strings: \\
return \(<0\) if str \(1<\operatorname{str} 2\); \\
0 if \(\operatorname{str} 1=\) str2; \\
\(>0\) if \(\operatorname{str} 1>\operatorname{str} 2\)
\end{tabular} \\
\hline char *istricmp(char *strl, chat *str2, int n) & \begin{tabular}{l}
compare first \(n\) characters return \(<0\) if str \(]<\operatorname{str} 2\); \\
Oif strl \(=\) str2; \\
\(>1\) if str \(1>\) str- 2
\end{tabular} \\
\hline char *strcpy(char *elest, char \#sme) & copy sre into dest; return clest \\
\hline char *strncpy (char *elest, char *ste, int n) & copy \(n\) characters from \(s\) nc string into dest; return clest; \\
\hline size-t.strlerk(char *s) & return the length of a \(s\) \\
\hline char *strahr (char *s, int c) & return pointer to the first occurrence of \(c\) in \(s\); return \(N C O L L\) if mot present \\
\hline char *strroher(char*s, int c) & return pointer to last occurrence of \(c\) in \(s\); return \(N U L L\) if not present \\
\hline Ghar *strtok(char *s, char *ckelimiters) & return a token from s; token is surrounded by delimiters \\
\hline char *stristr(char *s, char *pat) & return pointer to start of par in \(s\) \\
\hline size-t strspu(char *s, chat *sparzset) & scan sfor characters in sparzset: return length of span \\
\hline size-t strospra(char *s, char *spanset) & scan \(s\) for chaxacters not in spanset; return length of span \\
\hline chat *strpbrk(ehar *s, chrer *spanset) & scan s for characters in spanser; return pointer to first occurrence of a character from spanset \\
\hline
\end{tabular}

Figure 2.7: C string functions

\subsection*{2.6 The String Abstract data type}

Example 2.2[String insertion]:
- Assume that we have two strings, say string 1 and string 2 , and that we want to insert string 2 into string 1 starting at the \(i\) th position of string 1. We begin with the declarations:
- In addition to creating the two strings, we also have created a pointer for each string.

\subsection*{2.6 The String Abstract data type}

Now suppose that the first string contains "amobile" and the second contains "uto".
- we want to insert "uto" starting at position 1 । the first string, thereb producing the word "automobile.'

(c) after strear (lemp, \((s+i))\)

\subsection*{2.6 The String Abstract data type}

\section*{String insertion function:}
- It should never be used in practice as it is wasteful in its use of time and space.
```

void strmins(char *s, char *t, int i)
/* insert strimg t into string s at position i */
char string[MAX.SIZE], *temp = string;
iE (i < O \&\&\& i > strlen(s)) {
Eprimtf(stderr,"POsition is out of bouncls \n");
exit(1);
}
if (!strlen(s))
strepy (s,t);
else if (strien(t)) {
strncpy (temp, s,i);
Str゙cat (temp,t);
strcat (temp, (s+i));
strccpy(s, temp) ;
}
}

```

Program 2.11: String insertion function

\subsection*{2.6 The String Abstract data type}
2.6.2 Pattern Matching:
- Assume that we have two strings, string and pat where pat is a pattern to be searched for in string.
- If we have the following declarations:
```

char pat[MAX-SIZE], string[MAX-SIZE], *t;

```
- Then we use the following statements to determine if pat is in string:
```

if (t = strstr(string,pat))
printf("The string from strstr is: %s\n",t);

```
else
```

printf("The pattern was not found with strstr\n");

```
 O**m) where \(n\) is the length of pat and \(m\) is the length of string.

\subsection*{2.6 The String Abstract data type}

> We can improve on an exhaustive pattern matching technique by quitting when strlen(pat) is greater than the number of remaining characters in the string.
```

int mfind(char *string, char *pat)
{
/* match the last character of pattern Eirst, and
then match from the begimming */
int i,j,start = 0;
irut lasts=strlen(string)-1;
int lastp = strlen(pat)-1;
int endmatch= lastp;
Eor (i a 0; endmatoh <= lasts; endmatch++, start++) {
if (string[endmatch] == pat[lastp])
Eor (j j 0, i = staxt; j < lastp \&\&
strimg[i]=== pat[j]; i++,j++)
i.f (j'== lastp)
return start; /* successful */
}
retuxm -1;
}

```

\subsection*{2.6 The String Abstract data type}

Example 2.3 [Simulation of nfind]
- Suppose pat="aab" and
string="ababbaabaa."
- Analysis of nfind:

The computing time fc these string is linear in the length of the string \(\mathrm{O}(m)\), but the Worst case is still O (n.m).


\subsection*{2.6 The String Abstract data type}

Ideally, we would like an algorithm that works in
O (strlen(string)+strlen(pat)) time. This is optimal for this problem as in the worst case it is necessary to look at all characters in the pattern and string at least once. Knuth,Morris, and Pratt have developed a pattern matching algorithm that works in this way and has linear complexity.

\subsection*{2.6 The String Abstract data type}

\section*{Suppose pat \(=\) "abcabcacab"}

Let \(s=s_{0} s_{2} \cdots s_{m-1}\) be the string and assume that we are currently determining whether or not there is a match beginning at \(s_{i}\). If \(s_{i} \neq a\) then, clearly, we may proceed by comparing \(s_{i+1}\) and \(a\). Similarly if \(s_{i}=a\) and \(s_{i+1} \neq b\) then we may proceed by comparing \(s_{i+1}\) and \(a\). If \(s_{i} s_{i+1}=a b\) and \(s_{i+2} \neq c\) then we have the situation:
\[
\begin{array}{rlllllllllll}
s & = & - & a & b & ? & ? & ? & . & . & & ? \\
p a t & = & & a & b & c & a & b & c & a & c & a
\end{array} \quad b
\]

The ? implies that we do not know what the character in \(s\) is. The first ? in \(s\) represents \(s_{i+2}\) and \(s_{i+2} \neq c\). At this point we know that we may continue the search for a match by comparing the first character in pat with \(s_{i+2}\). There is no need to compare this character of pat with \(s_{i+1}\) as we already know that \(s_{i+1}\) is the same as the second character of pat, \(b\), and so \(s_{i+1} \neq a\). Let us try this again assuming a match of the first four characters in pat followed by a nonmatch, i.e., \(s_{i+4} \neq b\). We now have the situation:
\[
\begin{array}{rlllllllll}
s= & \quad & a & b & c & a & ? & ? & & \cdots \\
\text { pat }= & \quad a & b & c & a & b & c & a & c & a
\end{array}
\]

We observe that the search for a match can proceed by comparing \(s_{i+4}\) and the second character in pat, \(b\). This is the first place a partial match can occur by sliding the pattern pat towards the right. Thus, by knowing the characters in the patterm and the position in the pattern where a mismatch occurs with a character in \(s\) we can determine where in the pattern to continue the search for a match without moving backwards in \(s\). To formalize this, we define a failure function for a pattern.

\subsection*{2.6 The String Abstract data type(14/19)}

Definition: If \(p=p_{0} p_{1} \cdots p_{n-1}\) is a pattern, then its failure function, \(f\), is defined as:
\(f(j)= \begin{cases}\text { largest } i<j \text { such that } p_{0} p_{1} \cdots p_{i}=p_{j-i} p_{j-i+2} \cdots & p_{j} \text { if such an } i \geq 0 \text { exists } \\ \text { otherwise }\end{cases}\)
For the example pattern, \(p a t=a b c a b c a c a b\), we have:
\[
\begin{array}{rcccccccccc}
j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { pat } & a & b & c & a & b & c & a & c & a & b \\
f & -1 & -1 & -1 & 0 & 1 & 2 & 3 & -1 & 0 & 1
\end{array}
\]

From the definition of the failure function, we arrive at the following rule for pattern matching: if a partial match is found such that \(S i-j \ldots S i-1=P O P 1 \ldots P j-1\) and \(S i!=P j\) then matching may be resumed by comparing Si and Pf(j1) +1 if \(j!=0\). If \(j=0\), then we may continue by comparing Si+1 and PO.

\subsection*{2.6 The String Abstract data type}

\section*{This pattern matching rule translates into function pmatch.}
```

\#include <stdio.n>
\#include <string.h>
\#define max_string_size 100
\#define max_pattern__size 100
int pmatch();
void Eail();
int failure[max_pattern_size];
char string[max_string_size];
char pat[max pattern sizze];

```
```

int pmatch(char *string, char *pat)
{
/* Knuth, Morris, Pratt string matching algorithm */
int i = 0, j = 0;
int lens = strlen(string);
int lenp = strlen(pat);
while (i < lens \&\& j < lenp) {
1f (string[i] == pat[j]) {
i++; j++; }
else 土f (j == 0) i++;
else j = failure[j-1]+1;
}
return ((j == lenp) ? (i-lenp) : - I);
}

```

Program 2.13: Knuth, Morris, Pratt pattern matching algorithm

\subsection*{2.6 The String Abstract data type}

Analysis of pmatch:
- The while loop is iterated until the end of either the string or the pattern is reached. Since \(i\) is never decreased, the lines that increase \(i\) cannot be executed
 failure[j-1]+1 decreases \(j++\) as otherwise, \(j\) falls off the pattern. Each time the statement \(j++\) is executed, \(i\) is also incremented. So \(j\) cannot be incremented more than \(m\) times. Hence the complexity of function pmatch is \(\mathrm{O}(m)=\mathrm{O}\) (strlen(string)).

\subsection*{2.6 The String Abstract data type}
- If we can compute the failure function in O(strlen(pat)) time, then the entire pattern matching process will have a computing time proportional to the sum of the lengths of the string and pattern. Fortunately, there is a fast way to compute the failure function. This is based upon the following restatement of the failure f
\[
f(j)= \begin{cases}-1 & \text { if } j=0 \\ f^{m}(j-1)+1 & \text { where } m \text { is the least integer } k \text { for which } p_{f^{k}(j-1)+1}=p_{j} \\ -1 & \text { if there is no } k \text { satisfying the above }\end{cases}
\]
\[
\text { (note that } \left.f^{1}(j)=f(j) \text { and } f^{m}(j)=f\left(f^{m-1}(j)\right)\right) \text {. }
\]

\subsection*{2.6 The String Abstract data type}
```

void fail(char *pat)
/* compute the pattern's failure function */
int n = strlen(pat);
failure[0] = - 1;
for (j=1; j< n; j++) {
i = failure[j-1];
while ((pat[j] != pat[i+1]) \&\& (i >= 0))
i = failure[i];
if (pat[j] == pat[i+1])
failure[j] = i+1;
else failure[j] = -1;
}
}

```

Program 2.14: Computing the failure function

\section*{MODULE 2 Stacks and Queues}

\section*{Abstract Data Type}

Abstract Data Type as a design tool
Concerns only on the important concept or model
No concern on implementation details. Stack \& Queue is an example of ADT An array is not ADT.

\section*{What is the difference?}

Stack \& Queue vs. Array
- Arrays are data storage structures while stacks and queues are specialized DS and used as programmer's tools.
Stack - a container that allows push and pop
Queue - a container that allows enqueue and dequeue
No concern on implementation details.
In an array any item can be accessed, while in these data structures access is restricted.
They are more abstract than arrays.

\section*{Questions?}

Array is not ADT Is Linked list ADT?
Is Binary-tree ADT?
Is Hash table ADT?
What about graph?

\section*{Stacks}

Allows access to only the last item inserted. An item is inserted or removed from the stack from one end called the "top" of the stack. This mechanism is called Last-In-First-Out (LIFO).

A Stack Applet example

\section*{Stack operations}

Placing a data item on the top is called "pushing", while removing an item from the top is called "popping" it. push and pop are the primary stack operations.
Some of the applications are : microprocessors, some older calculators etc.

\section*{Example of Stack codes}

\section*{First example stack ADT and implementation}

C: \(\backslash\) Documents and Settings \(\backslash\) box \(\backslash \mathrm{My}\)
Documents \(\backslash C S \backslash C S C \backslash 220 \backslash\) ReaderPrograms \(\backslash\) ReaderFiles \(\backslash\) Chap04\Stack\stack.ja va

push and pop operations are performed in OHt time.

\section*{Example of Stack codes}

Reversed word
What is it?
ABC -> CBA
C: \Documents and Settings \(\backslash\) box \(\backslash\) My
Documents \(\backslash C S \backslash C S C \backslash 220 \backslash\) ReaderPrograms \(\backslash\) ReaderFi
les \Chap04\Reverse\reverse.java

\section*{Example of Stack codes}

BracketChecker (balancer)
A syntax checker (compiler) that understands a language containing any strings with balanced brackets '\{‘ [' '(' and ')', ']', '\}'
- S -> BI Sl Br
- S1 -> Bl string Br
- BI -> ‘\{‘ | ‘[‘ | '(‘
- Br -> ')', | ']', | '\}'

C: \Documents and Settings \(\backslash\) box \(\backslash\) My
Documents \CS\CSC\220\ReaderPrograms \ReaderFi
les \Chap04\Brackets\brackets.java

Queue is an ADT data structure similar to stack, except that the first item to be inserted is the first one to be removed.
This mechanism is called First-In-First-Out (FIFO). Placing an item in a queue is called "insertion or enqueue", which is done at the end of the queue called "rear".
Removing an item from a queue is called "deletion or dequeue", which is done at the other end of the queue called "front".
Some of the applications are : printer queue, keystroke queue, etc.

When a new item is inserted at the rear, the pointer to rear moves upwards.
Similarly, when an item is deleted from the queue the front arrow moves downwards. After a few insert and delete operations the rear might reach the end of the queue and no more items can be inserted although the items from the front of the queue have been deleted and there is space in the queue.

\section*{Circular Queue}

To solve this problem, queues implement wrapping around. Such queues are called Circular Queues.
Both the front and the rear pointers wrap around to the beginning of the array. It is also called as "Ring buffer".
Items can inserted and deleted from a queue in \(\mathrm{O}(1)\) time.

\section*{Queue Example}


\section*{Queue sample code}

C: \Documents and Settings \(\backslash\) box \(\backslash \mathrm{My}\)
Documents \(\backslash C S \backslash C S C \backslash 220 \backslash\) ReaderPrograms \(\backslash\) Re aderFiles\Chap04\Queue\queue.java

\section*{Various Queues}

Normal queue (FIFO)
Circular Queue (Normal Queue)
Double-ended Queue (Deque)
Priority Queue

\section*{Deque}

It is a double-ended queue.
Items can be inserted and deleted from either ends.
More versatile data structure than stack or queue.
E.g. policy-based application (e.g. low priority go to the end, high go to the front)
In a case where you want to sort the queue once in a while, What sorting algorithm will you use?

\section*{Priority Queues}

More specialized data structure.
Similar to Queue, having front and rear. Items are removed from the front.
Items are ordered by key value so that the item with the lowest key (or highest) is always at the front.
Items are inserted in proper position to maintain the order.
Let's discuss complexity

\section*{Priority Queue Example}

\section*{Priority Queues}

Used in multitasking operating system. They are generally represented using "heap" data structure.
Insertion runs in \(\mathrm{O}(\mathrm{n})\) time, deletion in \(\mathrm{O}(1)\) time.

C: \Documents and Settings \(\backslash\) box \(\backslash\) My Documents \CS \CSC \(\backslash 220 \backslash\) ReaderPrograms \(\backslash\) Re aderFiles \Chap04\PriorityQ\priorityQ.java

\section*{Parsing Arithmetic Expressions}
\(2+3\)
- \(23+\)
\(2+4\) * 5
- \(245^{*}+\)
\(((2+4) * 7)+3 *(9-5)) \cdot 24+7^{*} 395-*+\)
Infix vs postfix
Why do we want to do this transformation?

\section*{Infix to postfix}

Read ch from input until empty
- If ch is arg, output = output + arg
- If ch is "(", push '(';
- If ch is op and higher than top push ch
- If ch is ")" or end of input,
- output = output + pop() until empty or top is "("
- Read next input

C: \Documents and Settings \(\backslash \mathrm{box} \backslash \mathrm{My}\)
Documents \(\backslash C S \backslash C S C \backslash 220 \backslash\) ReaderPrograms \(\backslash\) Re
aderFiles\Chap04\Postfix\postfix.java

\section*{Postfix eval}
\(5+2\) * \(3->523\) * +
Algorithm
- While input is not empty
- If ch is number, push (ch)
- Else
- Pop (a)
- Pop(b)
- Eval (ch, a, b)

C: \Documents and Settings \(\backslash\) box \(\backslash\) My
Documents \CS\CSC\220\ReaderPrograms \(\backslash\) Re aderFiles \Chap04\Postfix\postfix.java

\section*{Recursive Thinking}

\section*{Recursion is:}
- A problem-solving approach, that can ...
- Generate simple solutions to ...
- Certain kinds of problems that ...
- Would be difficult to solve in other ways

Recursion splits a problem:
- Into one or more simpler versions of itself

Recursive Thinking: Another Example
Strategy for searching a sorted array:
1. if the array is empty
2. return -1 as the search result (not present)
3. else if the middle element \(==\) target return subscript of the middle element
5. else if target < middle element
6. recursively search elements before middle
else
Tecursively search elements after the

\section*{Recursive Thinking: The General} Approach
1. if problem is "small enough"
2. solve it directly
3. else
4. break into one or more smaller subproblems
5. solve each subproblem recursively combine results into solution to whole problem

Requirements for Recursive olution

At least one "small" case that you can solve directly
A way of breaking a larger problem down into:
One or more smaller subproblems
Each of the same kind as the original
A way of combining subproblem results into an overall solution to the larger problem

\section*{General Recursive Design Strategy}

Identify the base case(s) (for direct solution)
Devise a problem splitting strategy
- Subproblems must be smaller
- Subproblems must work towards a base case

Devise a solution combining strategy

\section*{Recursive Design Example}

Recursive algorithm for finding length of a string:
1. if string is empty (no characters)
2. return \(0 \leqslant \underline{\text { base case }}\)
3. else \(\leftarrow\) recursive case
4. compute length of string without first character
5. return 1 + that length

Note: Not best technique for this problem; illustrates the approach.

\section*{Recursive Design Example: Code}

Recursive algorithm for finding length of a string: public static int length (String str) \{ if (str == null ||
str.equals(""))
return 0;
else return length(str.substring(1)) + 1;
\}

\section*{Recursive Design Example:} printChars

Recursive algorithm for printing a string: public static void printChars
(String str) \{
if (str == null ||
```

 str.equals(""))
    ```
return;
else
System.out.println(str.charAt(0)); printChars(str.substring(1));
\}

\section*{Recursive Design Example:} printChars2

Recursive algorithm for printing a string? public static void printChars2
(String str) \{
if (str == null ||
str.equals(""))
return;
else
printChars2 (str.substring(1)) ;
System.out.println(str.charAt(0));
\}

\section*{Recursive Design Example:} mystery

What does this do? public static int mystery (int n) \{ if ( \(\mathrm{n}==0\) ) return 0 ;
else return \(\mathrm{n}+\) mystery(n-1);
\}

\section*{Proving a Recursive Method Correct}

Recall Proof by Induction:
1. Prove the theorem for the base case(s): \(n=0\)
2. Show that:
- If the theorem is assumed true for \(n\),
- Then it must be true for \(n+1\)

Result: Theorem true for all \(\mathrm{n} \geq 0\).

\section*{Proving a Recursive Method orrect (2)}

\section*{Recursive proof is similar to induction:}
1. Show base case recognized and solved correctly
2. Show that
- If all smaller problems are solved correctly,
- Then original problem is also solved correctly
3. Show that each recursive case makes progress towards the base case \(\leftarrow\) terminates properly

\section*{Tracing a Recursive Method}


\section*{Recursive Definitions of}

\section*{Mathematical Formulas}

Mathematicians often use recursive definitions
These lead very naturally to recursive algorithms
Examples include:
- Factorial
- Powers
- Greatest common divisor

\section*{Recursive Definitions: Factorial}
\(0!=1\)
\(\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-\mathrm{l})\) !

FI\|GUR\|E \(7=5\)
Trace of
factorial (4)


If a recursive function never reaches its base case, a stack overflow error occurs

\section*{Recursive Definitions: Factorial} Code
public static int factorial (int \(n\) ) \{ if \((n=0) / /\) or: throw exc. if \(<0\) return 1;
else
return \(n\) * factorial (n-1);
\}

\section*{Recursive Definitions: Power}
\[
\begin{aligned}
& x^{0}=1 \\
& x^{n}=x \times x^{n-1}
\end{aligned}
\]
public static double power
(double x, int \(n\) ) \{
if ( \(\mathrm{n}<=0\) ) // or: throw exc. if < 0 return 1;
else
return \(x\) * power (x, n-1);
\}

\section*{Recursive Definitions: Greatest} ommon Divisor

Definition of \(\operatorname{gcd}(\mathrm{m}, \mathrm{n})\), for integers \(\mathrm{m}>\mathrm{n}>0\) :
- \(\operatorname{gcd}(m, n)=n\), if \(n\) divides \(m\) evenly
- \(\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \% n)\), otherwise
public static int gcd (int m, int n) \{ if ( \(\mathrm{m}<\mathrm{n}\) )
return \(\operatorname{gcd}(n, m)\);
else if ( m \% \(\mathrm{n}==0\) ) // could check \(\mathrm{n}>0\) return \(n\);
else
return \(\operatorname{gcd}(n, m\) \% \(n\) );
\}

\section*{Recursive Definitions: Fibonacci}

\section*{Series}

Definition of fib \({ }_{i}\), for integer \(\mathrm{i}>0\) :
\(\mathrm{fib}_{1}=1\)
\(\mathrm{fib}_{2}=1\)
fib \(_{n}=\) fib \(_{n-1}+\) fib \(_{n-2}\), for \(n>2\)

\section*{Fibonacci Series Code}
public static int fib (int \(n\) ) \{
\[
\text { if }(n<=2)
\]
return 1;
else
return fib(n-1) + fib(n-2);
\}
This is straightforward, but an inefficient recursion ...

\section*{Efficiency of Recursion: Inefficient Fibonacci}

FIGURE 7.6
Hethod Calls Resulting
from fibonacci(5)


\section*{Efficient Fibonacci: Code}
public static int fibStart (int n) \{ return fibo(1, 0, n);
\}
private static int fibo (
int curr, int prev, int \(n\) ) \{
if ( \(\mathrm{n}<=1\) )
return curr;
else
return fibo(curr+prev, curr, n-1);
\}

\section*{Efficient Fibonacci: A Trace}


\section*{Problem Solving with Recursion}

Towers of Hanoi
Counting grid squares in a blob Backtracking, as in maze search

\section*{FIGURE 7.11}

Childrens Version of Towers of Hanoi


FIGURE 7.16
A Sample Grid for Counting Cells in a Blob
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\underline{8}\)} & \multicolumn{2}{|r|}{\(\underline{-2}\)} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Touckivitinmonate it Icew \\
Whum dare pops Mouf \\

\end{tabular}} \\
\hline ex & 131 & 24 & 13 & 48 & 19 \\
\hline Sit & t & 21 & 31 & \&1 & 81 \\
\hline er & 12 & 4 & 17 & 88 & 47 \\
\hline 83 & 13 & 33 & 37 & 2) & 83 \\
\hline \multicolumn{6}{|c|}{sanut.} \\
\hline
\end{tabular}

\section*{Towers of Hanoi: Description}

Goal: Move entire tower to another peg Rules:
1. You can move only the top disk from a peg.
2. You can only put a smaller on a larger disk (or on an empty peg)


\section*{Towers of Hanoi: Solution}

\section*{Strategy}


FIGURE 7.12
Towers of Hanoi After the First Two Steps in Solution of the Three-Disk Problem


FIGURE 7.13
Towers of Hanoi After First Two Steps in Solution of Two-Disk Problem


\section*{Towers of Hanoi: Solution Strategy (2)}

FIGURE 7.14
Towers of Hanci After the First Two Steps in Solution of the Four-Disk Problem


\section*{Towers of Hanoi: Program Cnarifiratinm}

TABLE 7.1
Inputs and Outputs for Towers of Hanoi Problem

\section*{Problem Inputs}

Number of disks (an integer)
Letter of starting peg. L (left), M (middle), or R (right)
Letter of destination peg ( \(\mathrm{L}, \mathrm{M}\), or R ), but different from starting peg
Letter of temporary peg ( \(\mathrm{L}, \mathrm{M}\), or R ), but different from starting peg and destination peg

\section*{Problem Outpits}

A list of moves

\title{
Towers of Hanoi: Program Specification (2)
}

\section*{TABLE 7.2}

Class TowersofHanoi

\section*{Methed}

Bchawier
public String show Hoves (int \(n\), char startPeg, char destreg, char tempPeg)

Builds a string containing all moves for a game with in disks on StartPeg that will be moved to destreg using tempPeg for temporary storage of disks being moved.

\section*{Towers of Hanoi: Recursion} Structure \(\operatorname{move}(\mathrm{n}, \mathrm{src}, \mathrm{dst}, \mathrm{tmp})=\)
if \(\mathrm{n}==1\) : move disk 1 from src to dst otherwise:
move(n-1, src, tmp, dst) move disk \(n\) from src to dst move(n-1, tmp, dst, src)

\section*{Towers of Hanoi: Code}
public class TowersOfHanoi \{ public static String showMoves (int \(n\), char src, char dst, char tmp) \{ if (n == 1)
return "Move disk 1 from " + src + " to " + dst + "\n";
else return showMoves ( \(\mathrm{n}-1\), src, tmp, dst) + "Move disk " \(+\mathrm{n}+\) " from " + src + " to " + dst + "\n" + showMoves ( \(\mathrm{n}-1\), tmp, dst, src) ;

\section*{Towers of Hanoi: Performance} Analysis

How big will the string be for a tower of size \(n\) ?
We'll just count lines; call this \(L(n)\).
For \(n=1\), one line: \(L(1)=1\)
For \(n>1\), one line plus twice \(L\) for next smaller size:
\(L(n+1)=2 \times L(n)+1\)
Solving this gives \(L(n)=2^{n}-1=O\left(2^{n}\right)\)
So, don't try this for very large n - you will do a lot of string concatenation and garbage cottection, and then run out of heap space and terminate -

\section*{MODULE 3 Linked Lists}

\section*{List Overview}

Linked lists
- Abstract data type (ADT)

Basic operations of linked lists
- Insert, find, delete, print, etc.

Variations of linked lists
- Circular linked lists
- Doubly linked lists

\section*{Linked Lists}


\section*{Head}

A linked list is a series of connected nodes
Each node contains at least
- A piece of data (any type)
- Pointer to the next node in the list

Head: pointer to the first node
The last node points to NULL
node


\section*{A Simple Linked List Class}

\author{
We use two classes: Node and List Declare Node class for the nodes
}
- data: double-type data in this example
- next: a pointer to the next node in the list
class Node \{ public:
\begin{tabular}{ll} 
double \(\quad\) data; & // data \\
Node* & next;
\end{tabular}

\section*{A Simple Linked List Class}

\section*{Declare List, which contains}
- head: a pointer to the first node in the list. Since the list is empty initially, head is set to NULL
- Operations on List
```

class List {
public:

```
```

List(void) { head = NULL; } // constructor

```
List(void) { head = NULL; } // constructor
~List(void); // destructor
~List(void); // destructor
bool IsEmpty() { return head == NULL; }
Node* InsertNode(int index, double x);
int FindNode(double x);
int DeleteNode(double x);
void DisplayList(void) ;
```

private:
Node* head;
\};

A Simple Linked List Class

Operations of List

- IsEmpty: determine whether or not the list is empty
- InsertNode: insert a new node at a particular position
- FindNode: find a node with a given value
- DeleteNode: delete a node with a given value
- DisplayList: print all the nodes in the list

Inserting a new node

Node* InsertNode (int index, double x)

- Insert a node with data equal to x after the index'th elements. (i.e., when index $=0$, insert the node as the first element; when index $=1$, insert the node after the first element, and so on)
- If the insertion is successful, return the inserted node. Otherwise, return NULL.
(If index is <0 or $>$ length of the list, the insertion will fail.)

Steps

1. Locate index'th element
2. Allocate memory for the new node
3. Point the new node to its successor
4. Point the new node's predecessor to the new nod ${ }^{〔}$
index'th
element

Inserting a new node

Possible cases of InsertNode

1. Insert into an empty list
2. Insert in front
3. Insert at back
4. Insert in middle

But, in fact, only need to handle two cases

- Insert as the first node (Case 1 and Case 2)
- Insert in the middle or at the end of the list (Case 3 and Case 4)

Inserting a new node

```
Node* List::InsertNode(int index, double x) { / IV to locate
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
                        currNode = currNode->next;
                        currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
```

```
Node* newNode = new Node;
```

Node* newNode = new Node;
newNode->data = x;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;

```
    retan newNode;

\section*{Inserting a new node}
```

Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode \&\& index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > O \&\& currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;

```
        reta newNode;
\}

\section*{Inserting a new node}
```

Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode \&\& index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 \&\& currNode == NULL) return NULL;

```


\section*{retan newNode;}

\section*{Inserting a new node}
```

Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode \&\& index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 \&\& currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;^ Insert after currNode
else {
newNode->next =
newNode->next =
newNode->next =
newNode->next =
reto
newNode;

Finding a node

int FindNode (double x)

- Search for a node with the value equal to x in the list.
- If such a node is found, return its position. Otherwise, return 0 .

```
int List::FindNode(double x) {
    Node* currNode = head;
    int currIndex = 1;
    while (currNode && currNode->data != x) {
        currNode = currNode->next;
        currIndex++;
    }
    if (currNode) return currIndex;
    return 0;
```


Deleting a node

int DeleteNode (double x)

- Delete a node with the value equal to x from the list.
- If such a node is found, return its position. Otherwise, return 0.
Steps
- Find the desirable node (similar to FindNode)
- Release the memory occupied by the found node
- Set the pointer of the predecessor of the found node to the successor of the found node
Like InsertNode, there are two special cases
- Delete first node
- Delete the node in middle or at the end of the list

Deleting a node

```
int List::DeleteNode(double x) {
    Node* prevNode = NULL
    Node* currNode =
    int currIndex =
                                    head;
                                    is value eq al to x
    while (currNode && currNode->data != x) {
    prevNode = currNode;
    currNode = currNode->next;
    currIndex++;
    }
    if (currNode) {
    if (prevNode) {
                            prevNode->next = currNode->next;
                            delete currNode;
}
else {
                        head = currNode->next;
                                delete currNode;
}
    return currIndex;
```

 \}
 return 0;

Deleting a node

```
int List::DeleteNode(double x) {
    Node* prevNode = NULL;
    Node* currNode = head;
    int currIndex = 1;
    while (currNode && currNode->data != x) {
        prevNode = currNode;
        currNode = currNode->next;
        currIndex++;
    }
    if (currNode) {
        if (prevNode) {
    prevNode->next = currNode->next;
    delete currNode;
    }
    else {
            head = currNode->next;
            delete currNode;
            }
            return currIndex;
```

 \}
 return 0;

Deleting a node

int List:: DeleteNode(double x) \{
Node* prevNode $=$ NULL;
Node* currNode $=$ head;
int currIndex $=1$;
while (currNode \&\& currNode->data ! = x) \{
prevNode $=\quad$ currNode;
currNode $=$ currNode->next;
currIndex++;
\}
if (currNode) \{
if (prevNode) \{
prevNode->next = currNode->next;
delete currNode;
else \{
head $=$ currNode->next;
delete currNode;
\}
return currIndex;

Printing all the elements

void DisplayList(void)

- Print the data of all the elements
- Print the number of the nodes in the list

```
void List::DisplayList()
{
    int num = 0;
    Node* currNode = head;
    while (currNode != NULL) {
        cout << currNode->data << endl;
        currNode = currNode->next;
        num++;
    }
    cout << "Number of nodes in the list: " << num << endl;
```


Destroying the list

~List (void)

- Use the destructor to release all the memory used by the list.
- Step through the list and delete each node one by one.

```
List::~List(void) {
    Node* currNode = head, *nextNode = NULL;
    while (currNode != NULL)
    {
        nextNode = currNode->next;
        // destroy the current node
        delete currNode;
        currNode = nextNode;
    }
```


Using List

```
int main(void)
```

List list;
list. InsertNode (0, 7.0) ;
list.InsertNode (1, 5.0) ;
list.InsertNode (-1, 5.0) ;
list.InsertNode (0, 6.0) ;
// successful
list.InsertNode (8, 4.0) ; // unsuccessful
// print all the elements
list.DisplayList () ;
if(list.FindNode (5.0) > 0) cout \ll "5.0 found" \ll endi;
else
if(list.FindNode (4.5) > 0) cout \ll "4.5 found" \ll endl; else cout \ll " 4.5 not found" \ll endl;
list. DeleteNode (7.0) ;
list. DisplayList () ;

Variations of Linked Lists

Circular linked lists

- The last node points to the first node of the list

Head

- How do we know when we have finished traversing the list? (Tip: check if the pointer of the current node is equal to the head.)

Variations of Linked Lists

Doubly linked lists

- Each node points to not only successor but the predecessor
- There are two NULL: at the first and last nodes in the list
- Advantage: given a node, it is easy to visit its predecessor. Convenient to traverse lists backwards

Array versus Linked Lists

Linked lists are more complex to code and manage than arrays, but they have some distinct advantages.

- Dynamic: a linked list can easily grow and shrink in size.
- We don't need to know how many nodes will be in the list.

They are created in memory as needed.

- In contrast, the size of a C++ array is fixed at compilation time.
- Easy and fast insertions and deletions
- To insert or delete an element in an array, we need to copy to temporary variables to make room for new elements or close the gap caused by deleted elements.
- With a linked list, no need to move other nodes. Only need to reset some pointers.

Insertion Description

Follow the previous steps and we get

-Step 3

Insertion Description

Insertion at the top of the list Insertion at the end of the list
Insertion in the middle of the list

Insertion at the end

Steps:

Create a Node

Set the node data Values
Connect the pointers

Insertion Description

Follow the previous steps and we get

- Step 3

Insertion Description

Insertion at the top of the list Insertion at the end of the list
Insertion in the middle of the list

Insertion in the middle

Steps:
Create a Node
Set the node data Values
Break pointer connection
Re-connect the pointers

Insertion Description

head $\rightarrow 48 \rightarrow 4 \rightarrow 4 \rightarrow 4$

-Step 3

-Step 4

Outline

Introduction
Insertion Description
Deletion Description
Basic Node Implementation
Conclusion

Deletion Description

Deleting from the top of the list Deleting from the end of the list
Deleting from the middle of the list

Deletion Description

Deleting from the top of the list Deleting from the end of the list Deleting from the middle of the list

Deleting from the top

Steps
Break the pointer connection
Re-connect the nodes
Delete the node

Deletion Description

-head

$$
\begin{array}{|c|c|}
\hline \bullet 6 & \rightarrow \\
\hline 4 & \rightarrow \stackrel{\bullet 17}{ } \rightarrow{ }^{\circ} \rightarrow 42 \\
\hline
\end{array}
$$

-head
-head

Deletion Description

Deleting from the top of the list
Deleting from the end of the list
Deleting from the middle of the list

Deleting from the end

Steps
Break the pointer connection
Set previous node pointer to NULL
Delete the node

Deletion Description

Deletion Description

Deleting from the top of the list Deleting from the end of the list
Deleting from the middle of the list

Deleting from the Middle

Steps
Set previous Node pointer to next node Break Node pointer connection
Delete the node

Deletion Description

Basic Node Implementation

The following code is written in $\mathrm{C}++$:
Struct Node
int data;
struct
Node *next; "pointer"
\};
//any type of data could be another
//this is an important piece of code

MODULE - 4

TREES

Threaded Binary Tree

Threaded Binary Tree

In a linked representation of a binary tree, the number of null links (null pointers) are actually more than non-null pointers. Consider the following binary tree:

Threaded Binary Tree

In above binary tree, there are 7 null pointers
$\&$ actual 5 pointers.
In all there are 12 pointers.
We can generalize it that for any binary tree with n nodes there will be $(\mathrm{n}+1)$ null pointers and 2 n total pointers.
The objective here to make effective use of these null pointers.
A. J. perils \& C. Thornton jointly proposed idea to make effective use of these null pointers. According to this idea we are going to replace all the null pointers by the appropriate pointer values olled threads.

Threaded Binary Tree

And binary tree with such pointers are called threaded tree.
In the memory representation of a threaded binary tree, it is necessary to distinguish between a normal pointer and a thread.

Threaded Binary Tree

- Therefore we have an alternate node representation for a threaded binary tree which contains five fields as show bellow:

For any node p, in a threaded binary tree.
lthred $(p)=1$ indicates lchild (p) is a thread pointer
lthred $(p)=0$ indicates lchild (p) is a normal
rthred $(p)=1$ indicates rechild (p) is a thread
rthred $(p)=0$ indicates rehild (p) is a normal pointer

Threaded Binary Tree

Also one may choose a one-way threading or a two-way threading.
Here, our threading will correspond to the in order traversal of T.

Threaded Binary Tree One-Way

Accordingly, in the one way threading of T , a thread will appear in the right field of a node and will point to the next node in the in-order traversal of T .
See the bellow example of one-way in-order threading.

Threaded Binary Tree: One-Way

Threaded Binary Tree

Two-Way

In the two-way threading of T.
A thread will also appear in the left field of a node and will point to the preceding node in the in-order traversal of tree T .
Furthermore, the left pointer of the first node and the right pointer of the last node (in the in-order traversal of T) will contain the null value when T does not have a header node.

Threaded Binary Tree

Bellow figure show two-way in-order threading.
Here, right pointer=next node of in-order traversal and left pointer=previous node of in-order traversal
Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

Threaded Binary Tree

Two-way inorder threading

Threaded Binary Tree Two-way Threading with Header node

Again two-way threading has left pointer of the first node and right pointer of the last node (in the inorder traversal of T) will contain the null value when T will point to the header nodes is called two-way threading with header node threaded binary tree.

Threaded Binary Tree

Bellow figure to explain two-way threading with header nndo

Threaded Binary Tree

Bellow example of link representation of threading binary tree.
In-order traversal of bellow tree:
G,F,B,A,D,C,E

Threaded Binary Tree

Non-empty threaded binary tree

Threaded Binary Tree

Advantages of threaded binary tree:

Threaded binary trees have numerous advantages over non-threaded binary trees listed as below:

- The traversal operation is more faster than that of its unthreaded version, because with threaded binary tree non-recursive implementation is possible which can run faster and does not require the botheration of stack management.

Threaded Binary Tree

Advantages of threaded binary tree:

- The second advantage is more understated with a threaded binary tree, we can efficiently determine the predecessor and successor nodes starting from any node. In case of unthreaded binary tree, however, this task is more time consuming and difficult. For this case a stack is required to provide upward pointing information in the tree whereas in a threaded binary tree, without having to include the overhead of using a stack mechanism the same can be carried out with the threads.

Threaded Binary Tree

Advantages of threaded binary tree:

- Any node can be accessible from any other node. Threads are usually more to upward whereas links are downward. Thus in a threaded tree, one can move in their direction and nodes are in fact circularly linked. This is not possible in unthreaded counter part because there we can move only in downward direction starting from root.
- Insertion into and deletions from a threaded tree are although time consuming operations but these are very easy to implement.

Threaded Binary Tree

Disadvantages of threaded binary tree:

- Insertion and deletion from a threaded tree are very time consuming operation compare to non-threaded binary tree.
- This tree require additional bit to identify the threaded link.

Binary Search Trees

What is a binary tree?

Property1: each node can have up to two successor nodes (children)

- The predecessor node of a node is called its parent
- The "beginning" node is called the root (no parent)
- A node without children is called a leaf

A Tree Has a Root Node

Leaf nodes have no children

What is a binary tree? (cont.)

Property2: a unique path exists from the root to every other node

Some terminology

Ancestor of a node: any node on the path from the root to that node
Descendant of a node: any node on a path from the node to the last node in the path Level (depth) of a node: number of edges in the path from the root to that node Height of a tree: number of levels (warning: some books define it ar $\underset{\text { max }}{+11}$

A Tree Has Levels

Level One

Level Two

A Subtree

LEFT SUBTREE OF ROOT NODE

Another Subtree

What is the \# of nodes N of a full tree with height h ?

$$
\begin{aligned}
& N=2^{0}+2^{1}+\ldots+2^{h-1}=2^{h}-1 \\
& x^{0}+x^{1}+\ldots+x^{n-1}=\sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1}
\end{aligned}
$$

What is the height h of a full tree

 with N nodes?$$
\begin{aligned}
& 2^{h}-1=N \\
& \Rightarrow 2^{h}=N+1
\end{aligned}
$$

The
$(\operatorname{sam} \Leftrightarrow \Rightarrow h=\log (N+1) \rightarrow O(\log N)$
is N
The min height of a tree with N nodes is $\log (N+1)$

Searching a binary tree

(1) Start at the root
(2) Search the tree level by level, until you find the element you are searching for $(O(N)$ time in worst case)

Is this better than searching a linked list?

Binary Search Trees

Binary Search Tree Property: The value stored at a node is greater than the value stored at its left child and less than the value stored at its right child
Thus, the value stored at the root of a subtree is greater than any value in its left subtree and less than any value in its right subtree!!

Searching a binary search tree

(1) Start at the root
(2) Compare the value of the item you are searching for with the value stored at the root
(3) If the values are equal, then item found; otherwise, if it is a leaf node, then not found

Searching a binary search tree (cont.)

(4) If it is less than the value stored at the root, then search the left subtree (5) If it is greater than the value stored at the root, then search the right subtree (6) Repeat steps $2-6$ for the root of the subtree chosen in the previous step 4 or 5

Is this better than searching a linked list?

Tree node structure

template<class ItemType>
struct TreeNode \{
ItemType info;
TreeNode* left;
TreeNode* right; \};

Binary Search Tree Specification

\#include <fstream.h>
template<class ItemType> struct TreeNode;
enum OrderType \{PRE_ORDER, IN_ORDER, POST_ORDER\};
template<class ItemType> class TreeType \{
public:
TreeType();
~TreeType();
TreeType(const TreeType<ItemType>\&); void operator=(const TreeType<ltemType>\&); void MakeEmpty(); bool IsEmpty() const; bool IsFull() const; int NumberOfNodes() const;

Binary Search Tree Specification

(cont.)
void Retrieveltem(ItemType\&, bool\& found); void Insertltem(ItemType);
void Deleteltem(ItemType);
void ResetTree(OrderType);
void GetNextltem(ItemType\&, OrderType, bool\&); void PrintTree(ofstream\&) const; private:
TreeNode<ltemType>* root;
\};
\};

Function NumberOfNodes

Recursive implementation
\#nodes in a tree =
\#nodes in left subtree + \#nodes in right
subtree +1
What is the size factor?
Number of nodes in the tree we are examining
What is the base case?
The tree is empty
What is the general case?
CountNodes(Left(tree)) + CountNodes(Right(tree))
$+1$

Function NumberOfNodes (cont.)

template<class ItemType>
int TreeType<ltemType>::NumberOfNodes() const
\{
return CountNodes(root);
\}
template<class ItemType> int CountNodes(TreeNode<ltemType>* tree)
\{ if (tree == NULL) return 0;
else
return CountNodes(tree->left) + CountNodes(tree->right) + 1;

Let's consider the first few steps:

Function Retrieveltem

Retrieve: 18

Compare 18 with 17:
Choose right subtree
current tree

Compare 18 with 20: Choose left subtree

Compare 18 with 18: Found :!

current tree

Function Retrieveltem

What is the size of the problem?
Number of nodes in the tree we are examining What is the base case(s)?

1) When the key is found
2) The tree is empty (key was not found) What is the general case?

Search in the left or right subtrees

Function Retrieveltem (cont.)

```
template <class ItemType>
void TreeType<ltemType>:: Retrieveltem(ItemType& item,bool& found)
{
    Retrieve(root, item, found);
}
template<class ItemType>
void Retrieve(TreeNode<ItemType>* tree,ItemType& item,bool& found)
{
    if (tree == NULL) // base case 2
    found = false;
    else if(item < tree->info)
    Retrieve(tree->left, item, found);
    else if(item > tree->info)
    Retrieve(tree->right, item, found);
    else { // base case 1
    item = tree->info;
    found = true;
```


Function Insertltem

(b) Insert 5

(e) Insert 3

Use the
binary search tree property to insert the new item at the correct place
(h) Insert 6

(c) Insert 9

(f) Insert 8

(i) Insert 4

(c) Insert 7

(g) Insert 12

(j) Insert 20

(a) The initial call tree
(b) The first recursive call

(c) The second recursive call

(d) The base case

Function Insertltem (cont.)

What is the size of the problem?
Number of nodes in the tree we are examining What is the base case(s)?

The tree is empty
What is the general case?
Choose the left or right subtree

Function Insertltem (cont.)

```
template<class ItemType>
void TreeType<ItemType>::Insertltem(ItemType item)
{
    Insert(root, item);
}
template<class ItemType>
void Insert(TreeNode<ltemType>*& tree, ItemType item)
{
if(tree == NULL) { // base case
    tree = new TreeNode<ItemType>;
    tree->right = NULL;
    tree->left = NULL;
    tree->info = item;
}
else if(item < tree->info)
Insert(tree->left, item);
else
    Insert(tree->right, item);
}
```


Function Insertltem (cont.)

Does the order of inserting elements into a tree matter?

Yes, certain orders produce very unbalanced trees!!
Unbalanced trees are not desirable because search time increases!!
There are advanced tree structures (e.g.,"redblack trees") which guarantee balanced trees

Does the order of inserting elements into a tree matter? (cont.)

(a) Input: D B F A C E G

(b) Input: B A D C G F E

$\rightarrow A$

Function Deleteltem

First, find the item; then, delete it Important: binary search tree property must be preserved!!
We need to consider three different cases:
(1) Deleting a leaf
(2) Deleting a node with only one child
(3) Deleting a node with two children

(1) Deleting a leaf

Delete the node containing Z

(2) Deleting a node with only one child

Delete the node containing R

(3) Deleting a node with two children

(3) Deleting a node with two

 children (cont.)Find predecessor (it is the rightmost node in the left subtree)
Replace the data of the node to be deleted with predecessor's data
Delete predecessor node

Function Deleteltem (cont.)

What is the size of the problem?
Number of nodes in the tree we are examining What is the base case(s)?

Key to be deleted was found
What is the general case?
Choose the left or right subtree

Function Deleteltem (cont.)

```
template<class ItemType>
void TreeType<ltmeType>::Deleteltem(ItemType item)
{
    Delete(root, item);
}
template<class ItemType>
void Delete(TreeNode<ItemType>*& tree, ItemType item)
{
if(item < tree->info)
Delete(tree->left, item);
else if(item > tree->info)
Delete(tree->right, item);
else
    DeleteNode(tree);
}
```


Function Deleteltem (cont.)

Function Deleteltem (cont.)

template<class ItemType>
void GetPredecessor(TreeNode<ItemType>* tree, ItemType\& data)
\{
while(tree->right != NULL)
tree = tree->right;
data $=$ tree->info;
\}

Tree Traversals

There are mainly three ways to traverse a tree:
Inorder Traversal
Postorder Traversal
Preorder Traversal

Inorder Traversal: $\mathbb{A} E \mathbb{H} 』 \mathbb{M} \mathbb{T}^{*}$

Inorder Traversal

Visit the nodes in the left subtree, then visit the root of the tree, then visit the nodes in the right subtree

Inorder(tree)

If tree is not NULL Inorder(Left(tree))
Visit Info(tree) Inorder(Right(tree))
(Warning: "visit" means that the algorithm does something with the values in the node, e.g., print the value)

Postorder

Postorder Traversal

Visit the nodes in the left subtree first, then visit the nodes in the right subtree, then visit the root of the tree

Postorder(tree)
If tree is not NULL
Postorder(Left(tree))
Postorder(Right(tree))
Visit Info(tree)

Preorder Traversal: $\int E \mathbb{E} H T M$ Y

Preorder Traversal

Visit the root of the tree first, then visit the nodes in the left subtree, then visit the nodes in the right subtree

Preorder(tree)
If tree is not NULL
Visit Info(tree)
Preorder(Left(tree))
Preorder(Right(tree))

Tree Traversal S

Function PrintTree

We use "inorder" to print out the node values Why?? (keys are printed out in ascending order!!)
Hint: use binary search trees for sorting !!

Function PrintTree (cont.)

```
void TreeType::PrintTree(ofstream& outFile)
{
    Print(root, outFile);
}
template<class ItemType>
void Print(TreeNode<ltemType>* tree, ofstream& outFile)
{
if(tree != NULL) {
    Print(tree->left, outFile);
    outFile << tree->info;
    Print(tree->right, outFile);
}
}
```

(see textbook for overloading \ll and >>)

Class Constructor

template<class ItemType>
TreeType<ItemType>::TreeType()
\{
root = NULL;
\}

Class Destructor

W

Class Destructor (cont'd)

Delete the tree in a "bottom-up" fashion Postorder traversal is appropriate for this !!
TreeType::~TreeType()
Destroy(root);
\}
void Destroy(TreeNode<ItemType>*\& tree)
if(tree != NULL) \{
Destroy(tree->left); Destroy (tree->right); delete tree;

Copy Constructor

Copy Constructor (cont'd)

template<class ItemType>

TreeType<ItemType>::TreeType(const TreeType<ltemType>\& originalTree)
〔CopyTree(root, originaITree.root);
\}
template<class ItemType)
void Copy Tree(TreeNodexItemType>*\& copy,
TreeNode<ltemType> ${ }^{*}$ originall ree)
\{
if(originalTree == NULL) copy = NULL; else \{
copy = new TreeNode<ltemType>; copy->info = originalTree->info;
CopyTree(copy->left, originalTree->left); CopyTree(copy->right, originalTree->right);

ResetTree and GetNextItem

The user is allowed to specify the tree traversal order
For efficiency, ResetTree stores in a queue the results of the specified tree traversal Then, GetNextrtam donnorioc tho node values from th

ResetTree and GetNextltem

 (cont.)(specification file)
enum OrderType \{PRE_ORDER, IN_ORDER, POST_ORDER\};
template<class ItemType> class TreeType \{
public:
// same as before
private:
TreeNode<ItemType>* root;
QueType<ltemType> preQue;
QueType<ItemType> inQue;

ResetTree and GetNextltem

 (cont.)template<class ItemType> void PreOrder(TreeNode<ItemType>*, QueType<ltemType>\&);
template<class ItemType> void InOrder(TreeNode<ltemType>*, QueType<ltemType>\&);
template<class ItemType>
void PostOrder(TreeNode<ltemType>*,
QueType<ltemType>\&);

ResetTree and GetNextltem (cont.)

template<class ItemType>
void PreOrder(TreeNode<ltemType>tree,
QueType<ItemType>\& preQue)

```
{
```

if(tree != NULL) \{ preQue.Enqueue(tree->info); PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

ResetTree and GetNextltem (cont.)

```
template<class ItemType>
void InOrder(TreeNode<ItemType>tree,
    QueType<ltemType>& inQue)
{
    if(tree != NULL) {
    InOrder(tree->left, inQue);
    inQue.Enqueue(tree->info);
    InOrder(tree->right, inQue);
    }
```


ResetTree and GetNextltem

 (cont.)template<class ItemType>
void PostOrder(TreeNode<ItemType>tree,
QueType<ltemType>\& postQue)
\{
if(tree != NULL) \{
PostOrder(tree->left, postQue);
PostOrder(tree->right, postQue); postQue.Enqueue(tree->info);

The function ResetTree

template<class ItemType> void TreeType<ltemType>::ResetTree(OrderType order) \{
switch(order) \{
case PRE_ORDER: PreOrder(root, preQue); break;
case IN_ORDER: InOrder(root, inQue); break;
case POST_ORDER: PostOrder(root, postQue);
break;

The function GetNext/tem

```
template<class ItemType>
void TreeType<ItemType>::GetNextltem(ItemType& item,
    OrderType order, bool& finished)
finished = false;
switch(order) {
    case PRE_ORDER: preQue.Dequeue(item);
        if(preQue.IsEmpty())
                        finished = true;
                        break;
    case IN_ORDER: inQue.Dequeue(item);
        if(inQue.IsEmpty())
        finished = true;
        break;
    case POST_ORDER: postQue.Dequeue(item);
        if(postQue.IsEmpty())
        finished = true;
        break;
```


Iterative Insertion and Deletion

See textbook

Comparing Binary Search Trees to Linear Lists

Big-O Comparison

| Operation | Binary
 Search Tree | Array-
 based List | Linked
 List |
| :--- | :---: | :---: | :---: |
| Constructor | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ |
| Destructor | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(1)$ | $\mathrm{O}(\mathrm{N})$ |
| IsFull | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ |
| IsEmpty | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ |
| Retrieveltem | $\mathrm{O}(\log \mathrm{N})$ | $\mathrm{O}(\log \mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |
| Inserttem | $\mathrm{O}(\log \mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |
| Detian | $\mathrm{O}(\log \mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}(\mathrm{N})$ |

Exercises

$$
1-3,8-18,21,22,29-32
$$

MODULE 5

GRAPHS

Definition

G consists of two sets

- a finite, nonempty set of vertices V(G)
- a finite, possible empty set of edges E(G)
- G(V,E) represents a graph
- An is one in which the pair of vertices in a edge is unordered, $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)=\left(\mathrm{v}_{1}, \mathrm{~V}_{0}\right)$
- A directed graph is one in which each edge is a directed pair of vertices, $\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}\right\rangle!=\left\langle\mathrm{v}_{1}, \mathrm{v}_{0}\right\rangle$

Examples for Graph

G1

G2

$\mathrm{V}\left(\mathrm{G}_{1}\right)=\{0,1,2,3\}$
$\mathrm{E}\left(\mathrm{G}_{1}\right)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$ $\mathrm{V}\left(\mathrm{G}_{2}\right)=\{0,1,2,3,4,5,6\}$ $\mathrm{V}(\mathrm{G} 3)=\{0,1,2\}$ $E\left(G_{3}\right)=\{\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,2\rangle\}$
complete undirected graph: $\mathrm{n}(\mathrm{n}-1) / 2$ edges complete directed graph: $n(n-1)$ edges

Complete Graph

- A complete graph is a graph that has the maximum number of edges
- for
with n vertices, the maximum number of edges is
- for directed graph with n vertices, the maximum number of edges is
- example: G1 is a complete graph

Adjacent and Incident

- If ($\mathrm{V}_{0}, \mathrm{~V}_{1}$) is an edge in an undirected graph,
- V_{0} and v_{1} are
- The edge ($\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{1}$) is incident on vertices v_{0} and v_{1}
\square If $\left\langle\mathrm{V}_{0}, \mathrm{~V}_{1}\right\rangle$ is an edge in a directed graph
$-\mathrm{v}_{0}$ is adjacent to v_{1}, and v_{1} is adjacent from v_{0}
- The edge $\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}>\right.$ is incident on v_{0} and v_{1}
*Figure 6.3:Example of a graph with feedback loops and a multigraph (p.260)

(a)

(b) multiple occurrences of the same edge

Subgraph and Path

- A subgraph of G is a graph G^{\prime} such that $V\left(G^{\prime}\right)$ is a subset of $V(G)$ and $E\left(G^{\prime}\right)$ is a subset of $E(G)$
- A path from vertex v_{p} to vertex v_{q} in a graph G, is a sequence of vertices, $v_{p}, v_{i l}, v_{i,}, \ldots, v_{i n}, v_{q}$, such that $\left(\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{i}}\right),\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right), \ldots,\left(\mathrm{v}_{\mathrm{in}}, \mathrm{v}_{\mathrm{q}}\right)$ are edges in an undirected graph
- The length of a path is the number of edges on it

Figure 6.4: subgraphs of G_{1} and $G_{3}(p .261)$

(i)
(ii)

(a) Some of the subgraph of G_{1}

(b) Some of the subgraph of G_{3}

Simple Path and Style

- A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- In an undirected graph G, two vertices, v_{0} and v_{1} are connected if there is a path in G from v_{0} to v_{1}
- An undirected graph is connected if, for every pair of distinct vertices v_{i}, v_{i}, there is a path from v_{i} to v_{j}
connected

G1

G_{2}
tree (acyclic graph)

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic.
- A directed graph is strongly connected if there is a directed path from v_{i} to v_{j} and also from V_{j} to V_{i}.
- A strongly connected component is a maximal subgraph that is strongly connected.
*Figure 6.5: A graph with two connected components (p.262) connected component (maximal connected subgraph)
H_{1}

$\mathbf{G}_{\mathbf{4}}$ (not connected)
*Figure 6.6: Strongly connected components of G_{3} (p.262)
strongly connected component not strongly connected (maximal strongly connected subgraph)

Degree

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
- the in-degree of a vertex v is the number of edges that have v as the head
- the out-degree of a vertex v is the number of edges that have v as the tail
- if d_{i} is the degree of a vertex i in a graph G with n vertices ${ }_{n-1}$ and e edges, the number of edges is

$$
e=\left(\sum_{0} d_{i}\right) / 2
$$

undirected graph
degree

$\begin{array}{lll}\begin{array}{l}\text { directed graph } \\ \text { in-degree } \\ \text { out-degree }\end{array} & \text { in:1, out: } 1 \\ & \text { in: 1, out: } 2 \\ & \text { in: 1, out: } 0\end{array}$

ADT for Graph

structure Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices
functions: for all graph \in Graph, v, v_{1} and $v_{2} \in$ Vertices
Graph Create()::=return an empty graph
Graph InsertVertex $($ graph,$v)::=$ return a graph with v inserted. v has no incident edge.
Graph InsertEdge $(\operatorname{graph}, v 1, v 2)::=$ return a graph with new edge between v_{1} and v_{2}
Graph DeleteVertex $($ graph,$v)::=$ return a graph in which v and all edges incident to it are removed
Graph DeleteEdge $\left(\operatorname{graph}, v_{1}, v_{2}\right)::=$ return a graph in which the edge $\left(v_{1}, v_{2}\right)$ is removed
Boolean IsEmpty (graph) ::= if (graph==empty graph) return TRUE else return FALSE
List Adjacent $($ graph,$v)::=$ return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ is in $\mathrm{E}(\mathrm{G})$, adj_mat $[\mathrm{i}][\mathrm{j}]=1$
- If there is no such edge in $E(G)$, adj_mat $[i][j]=0$
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Examples for Adjacency Matrix

symmetric
undirected: $\mathrm{n}^{2} / 2$
direction -n ${ }^{2}$

Gt

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{\sum=0} a d j_{-}$mat $[i][j]$
- For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$
\operatorname{ind}(v i)=\sum_{j=0}^{n-1} A[j, i] \quad \text { outd }(v i)=\sum_{j=0}^{n-1} A[i, j]
$$

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.
\#define MAX_VERTICES 50
typedef struct node *node_pointer; typedef struct node \{
int vertex;
struct node *link;
\};
node_pointer graph[MAX_VERTICES]; int $n=0$; /* vertices currently in use *

An undirected graph muertices and e edges $==>$ cythead nodes and 2 e list nodes

Interesting Operations

- degree of a vertex in an undirected graph
\# of nodes in adjacency list
■\# of edges in a graph -determined in $\mathrm{O}(\mathrm{n}+\mathrm{e})$
■out-degree of a vertex in a directed graph \# of nodes in its adjacency list
-in-degree of a vertex in a directed graph -traverse the whole data structure

Compact Representation

node[0] ... node[n-1]: starting point for vertices node[n]: $\mathrm{n}+2 \mathrm{e}+1$
node[$n+1] \ldots$ node[$n+2 e]$: head node of edge

| $[0]$ | 9 | $[8]$ | 23 | $[16]$ | 2 | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| $[1]$ | 11 | 0 | $[9]$ | 1 | 4 | $[17]$ | 5 |
| $[2]$ | 13 | | $[10]$ | 2 | 5 | $[18]$ | 4 |
| $[3]$ | 15 | 1 | $[11]$ | 0 | $[19]$ | 6 | |
| $[4]$ | 17 | | $[12]$ | 3 | 6 | $[20]$ | 5 |
| $[5]$ | 18 | 2 | $[13]$ | 0 | $[21]$ | 7 | |
| $[6]$ | 20 | | $[14]$ | 3 | 7 | $[22]$ | 6 |
| $[7]$ | 22 | 3 | $[15]$ | 1 | | | |

Figure 6.10: Inverse adjacency list for G_{3}

Determine in-degree of a vertex in a fast way.

Figure 6.11: Alternate node structure for adjacency lists (p.267)

| tail | head | column link for head | row link for tail |
| :--- | :--- | :--- | :--- |

Figure 6.12: Orthogonal representation for graph $\underline{\mathrm{G}}_{3}(\mathrm{p} .268)$

$$
\left\lceil\left.\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array} \right\rvert\,\right.
$$

Figure 6.13:Alternate order adjacency list for $\mathrm{G}_{1}(\underline{\text { p.268 }})$
Order is of no significance.
headnodes vertax link

Some Graph Operations

- Traversal

Given $G=(V, E)$ and vertex v, find all $w \in V$, such that w connects v.

- Depth First Search (DFS) preorder tree traversal
- Breadth First Search (BFS)
level order tree traversal
- Connected Components

Spanning Trees
*Figure 6.19: Graph G and its adjacency lists (p.274)
depth first search: v0, v1, v3, v7, v4, v5, v2, v6

(b)
breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search

```
#define FALSE O
#define TRUE 1
short int visited[MAX VERTICES];
void dfs(int v)
{
node_pointer w;
visited[v]= TRUE;
printf("\%5d", v);
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex])
```

dfs (w->vertex) ;
Data structure adjacency list: O(e) adjacency matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Breadth First Search

typedef struct queue *queue_pointer; typedef struct queue \{

```
int vertex; queue_pointer link;
```

\};
void addq(queue_pointer *, queue_pointer *, int);
int deleteq(queue_pointer *);

Breadth First Search (Continued)

void bfs (int v)
\{
node_pointer w;
queue_pointer front, rear;
front $=$ rear $=$ NULL;
printf("\%5d", v);

```
adjacency list: \(\mathrm{O}(\mathrm{e})\)
adjacency matrix: \(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
```

visited[v] = TRUE;
addq(\&front, \&rear, v);
while (front) \{
$\mathrm{v}=$ deleteq (\&front) ;
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex]) \{ printf("\%5d", w->vertex); addq(\&front, \&rear, w->vertex); visited[w->vertex] = TRUE;
\}
\}

Connected Components

void connected (void)
\{

$$
\text { for (i=0; i<n; i++) \{ } \begin{aligned}
& \text { if }(!\text { visited[i]) }\{ \\
& \text { dfs(i); } \\
&\text { printf(" } \left.\backslash n^{\prime \prime}\right) ;
\end{aligned}
$$

Searching and Sorting

Topics
Sequential Search on an Unordered File Sequential Search on an Ordered File Binary Search

Bubble Sort

Insertion Sort

Common Problems

There are some very common problems that we use computers to solve:

- Searching through a lot of records for a specific record or set of records
- Placing records in order, which we call sorting

There are numerous algorithms to perform searches and sorts. We will briefly explore a few common ones.

Searching

A question you should always ask when selecting a search algorithm is "How fast does the search have to be?" The reason is that, in general, the faster the algorithm is, the more complex it is.
Bottom line: you don't always need to use or should use the fastest algorithm. Let's explore the following search algorithms, keeping speed in mind.

- Sequential (linear) search
- Binary search

Sequential Search on an Unordered File

Basic algorithm:
Get the search criterion (key)
Get the first record from the file While ((record != key) and (still more records))
Get the next record
End_while

When do we know that there wasn't a record in the file that matched the key?

Sequential Search on an Ordered File

 Basic algorithm:Get the search criterion (key)
Get the first record from the file
While ((record < key) and (still more records))
Get the next record
End_while
If (record = key)
Then success
Else there is no match in the file
End_else
When do we know that there wasn't a record in the file that matched the key?

Sequential Search of

 Ordered vs. Unordered ListLet's do a comparison.
If the order was ascending alphabetical on customer's last names, how would the search for John Adams on the ordered list compare with the search on the unordered list?

- Unordered list
- if John Adams was in the list?
- if John Adams was not in the list?
- Ordered list
- if John Adams was in the list?
- if John Adams was not in the list?

Ordered vs Unordered (con't)

How about George Washington?

- Unordered
- if George Washington was in the list?
- If George Washington was not in the list?
- Ordered
- if George Washington was in the list?
- If George Washington was not in the list?

How about James Madison?

Ordered vs. Unordered (con't)

 Observation: the search is faster on an ordered list only when the item being searched for is not in the list.Also, keep in mind that the list has to first be placed in order for the ordered search.
Conclusion: the efficiency of these algorithms is roughly the same.
So, if we need a faster search, we need a completely different algorithm. How else could we search an ordered file?

Binary Search

If we have an ordered list and we know how many things are in the list (i.e., number of records in a file), we can use a different strategy.
The binary search gets its name because the algorithm continually divides the list into two parts.

How a Binary Search Works

Always look at the center value. Each time you get to discard half of the remaining list.

Is this fast?

How Fast is a Binary Search?

Worst case: 11 items in the list took 4 tries How about the worst case for a list with 32 items?

- 1 st try - list has 16 items
- 2nd try - list has 8 items
- 3rd try - list has 4 items
- 4th try - list has 2 items
- 5th try - list has 1 item

How Fast is a Binary Search? (con't)

List has 250 items
1 st try - 125
items
2nd try - 63 items
3rd try - 32 items
4th try - 16 items
5th try - 8 items
6th try - 4 items
7th try - 2 items
8th try - 1 item

List has 512 items
1 st try - 256
items
2nd try - 128 items
3rd try - 64 items
4th try - 32 items
5th try - 16 items
6th try - 8 items
7th try - 4 items
8th try - 2 items
9th try - $\overline{1}$ item

What's the Pattern?

List of 11 took 4 tries
List of 32 took 5 tries
List of 250 took 8 tries
List of 512 took 9 tries
$32=2^{5}$ and $512=2^{9}$
$8<11<16 \quad 2^{3}<11<2^{4}$
$128<250<256 \quad 2^{7}<250<2^{8}$

A Very Fast Algorithm!

How long (worst case) will it take to find an item in a list 30,000 items long?

$$
\begin{aligned}
& 2^{10}=1024 \\
& 2^{11}=2048 \\
& 2^{12}=4096
\end{aligned}
$$

$$
\begin{aligned}
& 2^{13}=8192 \\
& 2^{14}=16384 \\
& 2^{15}=32768
\end{aligned}
$$

So, it will take only 15 tries!

Lg n Efficiency

We say that the binary search algorithm runs in $\log _{2} \mathrm{n}$ time. (Also written as $\lg \mathrm{n}$)
$\operatorname{Lg} n$ means the log to the base 2 of some value of n.
$8=2^{3} \quad \lg 8=3 \quad 16=2^{4} \quad \lg 16=4$
There are no algorithms that run faster than Ig n time.

Sorting

So, the binary search is a very fast search algorithm.
But, the list has to be sorted before we can search it with binary search.
To be really efficient, we also need a fast sort algorithm.

Common Sort Algorithms

Bubble Sort
Selection Sort Insertion Sort

Heap Sort Merge Sort Quick Sort

There are many known sorting algorithms. Bubble sort is the slowest, running in \mathbf{n}^{2} time. Quick sort is the fastest, running in $\mathbf{n} \lg \mathbf{n}$ time.
As with searching, the faster the sorting algorithm, the more complex it tends to be. We will examine two sorting algorithms:
Buble sort Insertionsur

Bubble Sort Code

void bubbleSort (int a[] , int size)
int \mathbf{i}, \mathbf{j}, temp;
for ($\mathbf{i}=0 ; \mathrm{i}<$ size; $\mathrm{i}++$) /* controls passes through the list */
\{
for ($\mathbf{j}=0 ; \mathrm{j}<\operatorname{size}-1$; j++) /* performs adjacent comparisons
*/
\{
if $(a[j]>a[j+1]) \quad / *$ determines if a swap should
occur */
\{

$$
\begin{aligned}
& \text { temp }=a[\mathrm{j}] ; \quad / * \text { swap is performed */ } \\
& a[j]=a[j+1] ; \\
& a[j+1]=\text { temp; }
\end{aligned}
$$

Insertion Sort

Insertion sort is slower than quick sort, but not as slow as bubble sort, and it is easy to understand.
Insertion sort works the same way as arranging your hand when playing cards.

- Out of the pile of unsorted cards that were dealt to you, you pick up a card and place it in your hand in the correct position relative to the cards you're already holding.

Arranging Your Hand

Arranging Your Hand

Insertion Sort

Unsorted - shaded
Look at 2 nd item - 5 .
Compare 5 to 7.
5 is smaller, so move 5 to temp, leaving an empty slot in position 2.
Move 7 into the empty slot, leaving position 1 open.

Move 5 into the open position.

Insertion Sort (con't)

Look at next item - 6 . Compare to 1st-5. 6 is larger, so leave 5. Compare to next - 7 . 6 is smaller, so move 6 to temp, leaving an empty slot.
Move 7 into the
slot, leaving position
open.

Move 6 to the open 2nd position.

Insertion Sort (con't)

Look at next item -

it is.
6.
where it is.

Compare to 1st - 5.
King is larger, so
leave 5 where
Compare to next King is larger, so leave 6

Compare to next - 7 .
King is larger, so leave 7 where it is.

Insertion Sort (con't)

| 5 |
| :--- |
| |
| 5 |
| 0 |

| 6 |
| :---: |
| 0 |
| 6 |

| 7 |
| :---: |
| |
| 7 |

| K |
| :---: |
| \bullet |
| K |

| 8 |
| :--- |
| 8 |
| 8 |
| |

| K |
| :--- |
| O_{1} |

(1)

| 5 |
| :--- |

5

| 6 |
| :--- |

Hashing

Concept of Hashing

In CS, a hash table, or a hash map, is a data structure that associates keys (names) with values (attributes).

- Look-Up Table
- Dictionary
- Cache
- Extended Array

Tables of logarithms

Example

A small phone book as a hash table.
from Wikipedia)

Dictionaries

Collection of pairs.

- (key, value)
- Each pair has a unique key.

Operations.

- Get(theKey)
- Delete(theKey)
- Insert(theKey, theValue)

Just An Idea

Hash table :

- Collection of pairs,
- Lookup function (Hash function)

Hash tables are often used to implement associative arrays,

- Worst-case time for Get, Insert, and Delete is O(size).
- Expected time is $\mathrm{O}(1)$.

Search vs. Hashing

Search tree methods: key comparisons

- Time complexity: O(size) or O(log n) Hashing methods: hash functions
- Expected time: O(1)

Types

- Static hashing (section 8.2)
- Dynamic hashing (section 8.3)

Static Hashing

Key-value pairs are stored in a fixed size table called a hash table.

- A hash table is partitioned into many buckets.
- Each bucket has many slots.
- Each slot holds one record.
- A hash function $f(x)$ transforms the identifier (key) into an address in the hash table

Hash table

Data Structure for Hash Table

\#define MAX_CHAR 10
\#define TABLE_SIZE 13
typedef struct \{
char key[MAX_CHAR];
/* other fields */
\} element;
element hash_table[TABLE_SIZE];

Linear probing (linear open addressing)

Open addressing ensures that all elements are stored directly into the hash table, thus it attempts to resolve collisions using various methods.

Linear Probing resolves collisions by placing the data into the next open slot in the table.

Linear Probing - Get And Insert

divisor $=b$ (number of buckets) $=17$. Home bucket $=$ key \% 17 .

- Insert pairs whose keys are $6,12,34,29,28,11$, $23,7,0,33,30,45$

Linear Probing - Delete

Delete(0)

| 0 | 4 | | | 8 | | 12 | | | | | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 45 | | 6 | 23 | $7 \mid$ | 28 | 12 | 29 | 11 | 30 | 33 |

- Search cluster for pair (if any) to fill vacated bucket.

| 0 | 4 | | | 8 | | 12 | | | | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3445 | | 6 | 23 | 7 | 28 | 12 | 29 | 11 | 30 | 33 |

Linear Probing - Delete(34)

| 0 | 4 | | | 8 | | 12 | | | | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 340 | 4. | | 6 | 23 | 7 | 2812 | 29 | 11 | 30 | 33 |
| 0 | 4 | | | 8 | | 12 | | | | 16 |
| 0 | 4. | | 6 | 23 | 7 | $28 \mid 12$ | 29 | 11 | 30 | 33 |

Search cluster for pair (if any) to fill vacated bucket.

Linear Probing - Delete(29)

| 0 | 4 | | | 8 | | 12 | | | 16 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 340 | 4. | | 6 | 23 | 7 | 28 | | 29 | 11 | 30 | 33 |
| 0 | 4 | | | 8 | | 12 | | | | | 16 |
| 340 | 4. | | 6 | 23 | 7 | 28 | | | 11 | 30 | 33 |

Search cluster for pair (if any) to fill vacated bucket.

Linear Probing (program 8.3)

```
void linear_insert(element item, element ht[]){
    int i, hash_value;
    i = hash_value = hash(item.key);
    while(strlen(ht[i].key)) {
            if (!strcmp(ht[i].key, item.key)) {
                fprintf(stderr, "Duplicate entry\n"); exit(1);
            }
        i = (i+1)%TABLE_SIZE;
        if (i== hash_value) {
            fprintf(stderr, "The table is full\n"); exit(1);
        } }
    ht[i] = item;
}
```


Problem of Linear Probing

Identifiers tend to cluster together
Adjacent cluster tend to coalesce
Increase the search time

Dynamic Hashing Using Directories

| Identifiers | Binary representaiton |
| :---: | :---: |
| a0 | 100000 |
| a1 | 100001 |
| b0 | 101000 |
| b1 | 101001 |
| c0 | 110000 |
| c1 | 110001 |
| c2 | 110010 |
| c3 | 110011 |

[^0]Figure 8.9: A trie to hole identifiers (p.415)

Read it in reverse order.
c5: 110101
c1: 110001

(a) two level trie on four pages

(b) inserting c 5 with overflow

(c) inserting cl with overflow

Dynamic Hashing Using Directories II

We need to consider some issues!

- Skewed Tree,
- Access time increased.

Fagin et. al. proposed extendible hashing to solve above problems.

- Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, and H. Raymond Strong, Extendible Hashing - A Fast Access Method for Dynamic Files, ACM Transactions on Database Systems, 4(3):315-344, 1979.

Dynamic Hashing Using Directories III

A directories is a table of pointer of pages.
The directory has k bits to index $2 \wedge k$ entries.
We could use a hash function to get the address of entry of directory, and find the page contents at the page.

$$
\begin{aligned}
& 00 \xrightarrow{\mathrm{a}} \mathrm{a} 0, \mathrm{~b} 0 \quad 000 \xrightarrow{\mathrm{a}} \mathrm{a} 0, \mathrm{~b} 0 \quad 0000 \xrightarrow{\mathrm{a}} \mathrm{a} 0, \mathrm{~b} 0 \\
& 01 \xrightarrow{\mathrm{c}} \mathrm{al}, \mathrm{~b} 1 \\
& 001 \xrightarrow{\mathrm{c}} \mathrm{a} 1, \mathrm{~b} 1 \\
& 0001 \xrightarrow{\mathrm{c}} \mathrm{al}, \mathrm{c} 1 \\
& 10 \xrightarrow{\mathrm{~b}} \mathrm{c} 2 \\
& 010 \xrightarrow{\mathrm{~b}} \mathrm{c} 2 \\
& 0010 \xrightarrow{\mathrm{~b}} \mathrm{c} 2 \\
& 11 \xrightarrow{\mathrm{~d}} \mathrm{c} 3
\end{aligned}
$$

The directory of the three tries of Figure 8.9
(a) 2 bits
(b) 3 bits
(c) 4 bits

Figure 8.10: Tries collapsed into directories

Dynamic Hashing Using Directories IV

It is obvious that the directories will grow very large if the hash function is clustering.
Therefore, we need to adopt the uniform hash function to translate the bits sequence of keys to the random bits sequence.

Moreover, we need a family of uniform hash functions, since the directory will grow.

- https://nptel.ac.in/courses/106102064/
- https://www.javatpoint.com/data-structure-tutorial
- https://www.youtube.com/watch?v=Db9ZYbJONHc
- https://www.youtube.com/watch?v=DFpWCl 49i0
- https://www.youtube.com/watch?v=3hyxc4juJRg
. https://nptel.ac.in/courses/106/102/106102064/

[^0]: Example:
 M (\# of pages)=4,
 P (page capacity) $=2$

 ## Allocation: lower order two bits

