K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109 DEPARTMENT OF BASIC SCIENCE

SESSION: 2021-2022 (EVEN SEMESTER)

ASSIGNMENT-I

Academic Year	2021-22		
Batch	2021-22		4
Year/Semester/Section	Common to all Branches-II SEM	Dept	Mathematics
Subject Code-Title	21MAT21 – ADVA NUMERICAL MET		LCULUS AND
Name of the Instructor	DIVYA R	- Fast	

	nment No: 1 Total m of Issue: 20/06/2022 Date of	arks:15 Submission	n: 4/07/	2022
Sl. No.	Assignment Questions	K Level	со	Mark s
V 30	Form the partial differential equation by eliminating arbitrary functions from. a) $\emptyset(x + y + z, x^2 + y^2 + z^2) = 0$ b) $lx + my + nz = \emptyset(x^2 + y^2 + z^2)$ c) $z = f\left(\frac{xy}{z}\right)$ d) $z = e^{ax+by}f(ax - by)$	K3 Applying	CO1	1
2.	Solve PDE by direct integration method. $\frac{\partial^2 z}{\partial x \partial t} = e^{-t} \cos x$ given $z = 0$ when $t = 0$ and $\frac{\partial z}{\partial t} = 0$ when $x = 0$	K3 Applying	CO1	1
3.	Solve $\frac{\partial^2 z}{\partial x \partial y} = \text{sinxsiny, for which } \frac{\partial z}{\partial y} = -2 \text{siny, when}$ $x = 0 \text{ and } z = 0, \text{ when y is an odd multiple of } \frac{\pi}{2}.$	K3 Applying	CO1	1
4.	Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that, when $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$	K3 Applying	CO1	1

5.	Solve $\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} - 4z = 0$ subject to the condition that $z = 1$ and $\frac{\partial z}{\partial y} = y$ when $x = 0$	K3 Applying	CO1	1
6.	a) Solve $(y-z)p + (z-x)q = (x-y)$. b) Solve $(y^2 + z^2)p + x(yq-z) = 0$.	K3 Applying	CO1	1
7.	Derive one dimensional heat and wave equation in the standard form.	K3 Applying	CO1	1
8.	Compute the real root of $x\log_{10}x - 1.2 = 0$, correct to four decimals by using Regula Falsi method.	K3 Applying	CO2	1
9.	Find a real root of $x\log_{10}x - 1.2 = 0$, by correct to four decimal places, using Regula falsi method the root lies between (2,3).	K3 Applying	CO2	1
10.	Find a real root of the equation $x^3 + x^2 + 3x + 4 = 0$, by performing two itertions using Newton — Raphson method.	K3 Applying	CO2	1

Course In charge

Head of the Department /0/20

Dr. C. VASUDEV
Professor & Head
Department of Basic Science
KS School of Engineering and Managem
Bangalore - 560 109.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109 DEPARTMENT OF BASIC SCIENCE

SESSION: 2021-2022 (EVEN SEMESTER)
ASSIGNMENT-II

Academic Year	2021-22			
Batch	2021-22			
Year/Semester/Section	Common to all Branches-II SEM	Dept	Mathematics	
Subject Code-Title	21MAT21 – ADVA NUMERICAL MET		LCULUS AND	
Name of the Instructor	Manoharkumar K N	ar tra		200

Date	gnment No: 1 e of Issue: 22						Total m Date of	arks:15 Submission: 4/08	3/2022	
SI. No.				Assignm	ent Quest	ions		K Level	со	Mari s
1.	From the fo (i) less that (ii)betwee	1 45 mar	ks		nber of st	udents wh	o have obtained	К3	CO2	1
1	Marks No. of Stud		0-40 1	40-50 42	50-60 51	60-70 35	70-80 31	Applying	COZ	
2.	Given $f(40)$ f(90) = 304	= 184, f((50) = 38) usi	204, f(60) ng Newtor	= 226, f(n's forwrd	70) = 250 interpola	f(80) = 276, tion formula.	K3 Applying	CO2	, 1
	Using Newton data x 3 f(x) 168	7 9 120 7	10	erence int	erpolation	n, find the	polynomial of the	K3 Applying	CO2	1
	Find the pol	ynomial	f(x) by	using Lag	range's fo	rmula froi	n the following da	ita:		
.	x f(x)	0 2		1 3	2 12	5 14		K3 Applying	CO2	1
		1								
	Use Lagrange	sinterp	olation	formula to	o fit a poly	nomial fo	r the data:			
	Use Lagrange X 0 v -12	e'sinterpe	olation	formula to	o fit a poly 4	nomial fo	r the data:	К3	CO2	

6.	a) Use Taylor's series method to find y at x = 0.1, 0.2, 0.3 considering the terms upto the third degree given that $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$ b)Employ Taylor's series method to find $y(0.1)$ given that $\frac{dy}{dx} - 2y = 3e^x$ whose solution passes through the origin	K3 Applying	CO3	2
7.	a) Given $\frac{dy}{dx} = 1 + \frac{y}{x}$, $y = 2$ at $x = 1$, find the pproximate value of y at $x = 1.4$ by taking step size $h = 0.2$ applying Modified Euler's Method. b) Use Modified Euler's Method to solve $\frac{dy}{dx} = x + \sqrt{y} $ in the range $0 \le x \le 0.4$ by taking $h = 0.2$, given that $y = 1$ at $x = 0$ initially	K3 Applying	CO3	2
8.	Using Runge – Kutta method of fourth order, find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x} , \qquad y(0) = 1 \text{ taking } h = 0.2$	K3 Applying	соз	2
9.	Given $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$, compute y at $x = 0.8$ by applying i) Milne's Method ii) Adam – Bashforth Method	K3 Applying	CO3	2
10.	The following table gives the solution of $5xy' + y^2 - 2 = 0$, find the value of y at $x = 4.5$ using Milne's predictor and corrector formula. Use corrector formula twice.	K3 Applying	CO3	2

Course In charge

Head of the Department

Dr. C. VASUDEV

Professor & Head

Department of Basic Science

KS School of Engineering and Management
Bangalore - 560 109.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109 DEPARTMENT OF BASIC SCIENCE

SESSION: 2021-2022 (EVEN SEMESTER)

ASSIGNMENT-III (Activity)

Academic Year	2021-22		
Batch	2021-22		
Year/Semester/Section	Common to all Branches-II SEM	Dept	Mathematics
Subject Code-Title	21MAT21 – ADVA NUMERICAL ME		LCULUS AND
Name of the Instructor	Nagarathna T K		

Assignment No: 3 Total marks:20
Date of Issue: /08/2022 Date of Submission: /08/2022

Sl. No.	Assignment Questions	K Level	со	Mark s
1.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$	K3 Applying	CO4	2
2.	Find the directional derivatives of $\emptyset = xy^2 + yz^3$ at $(2, -1, 1)$ along $i + 2j + 2k$.	K3 Applying	CO4	2
3.	If $\vec{F} = \nabla(xy^3z^2)$ find div \vec{F} and curl \vec{F} at the point $(1, -1, 1)$.	K3 Applying	CO4	2
4.	If $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ find a, b, c such that culf $\vec{F} = \vec{0}$ and then find \emptyset such that $\vec{F} = \nabla \emptyset$	K3 Applying	CO4	2
5.	Find the value of the constnt 'a' such that the vector field. $\vec{F} = (xy - z^3)i + (a - 2)x^2j + (1 - a)xz^2k$ is irrotational and hence find scalar function \emptyset such that $\vec{F} = \nabla \emptyset$	K3 Applying	CO4	2
.	Derive the relation between Gamma and Beta functions	K3 Applying	CO5	2
7.	Show that $\int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta * \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} = \pi$	K3 Applying	CO5	2
8.	Show that $\gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	K3 Applying	CO5	2
9.	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dxdydz$.	K3 Applying	CO5	2
10.	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dxdydz$	K3 Applying	CO5	2

Course In charge

Head of the Department

Dr. C. VASUDEV
Professor & Head
Department of Basic Science
School of Engineering and Management
Bangalore - \$60 109.