

1

ŀ

1

1

1

ļ

11111

1

1

1

1

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SESSION: 2021-2022 (EVEN SEMESTER)

,

Total marks:15

ASSIGNMENT-2

Batch	2019
Year/Semester/Section	111/V1/A
Course Code/Title	18EE62/Power System Analysis-1
Name of the Course Incharge	Tejaswini G V

Assignment No: 2 Date of Issue: 1/6/2022

Date of Issue: 1/6/2022		Date of Submission:15/6/2022		
Sl. No.	Assignment Questions	K Level	CO	Marks
1.	A 25MVA, 13.2kV synchronous generator is connected to a synchronous motor of same rating. Both have a transient reactance of 15%. The line connecting them has a reactance of 10% on the machine base. The motor is drawing a power of 18MW at 0.8 pf lead, at 12.9kV, when a short circuit occurs at its terminals, find the subtransient currents in the motor, generator and at fault points.	Applying K3	CO2	1
2.	A three phase, 5MVA, 6.6kV alternator with reactance of 8% is connected to a feeder of series impedance of $(0.12+j0.48)\Omega$ /phase/km. The transformer is rated at 3MVA, 6.6kV/33kV and has a series reactance of 5%. Determine the fault current supplied by the generator operating under no load with a voltage of 6.9kV, when a 3 phase symmetrical fault occurs at a point 15km along the feeder.	Applying K3	CO2	1
3.	A synchronous generator and synchronous motor 25MVA, 11kV and having 15% subtransient reactance are connected through transformers and transmission lines as shown in figure. Transformers are rated 25MVA, 11/66kV and 66/11kV respectively, with leakage reactance of 10%each. The line has the reactance of10% on the base of 25MVA, 66kV motor is drawing 15MW with 0.8pf leading and terminal voltage of motor is 10.6kV, when a symmetrical 3 phase fault occurs at its terminal. Determine the subtransient current in generator, motor and fault current.	Applying K3	CO2	1

9.	A 250 MVA, 11kV, 3 phase generator is connected to a large system through a transformer and a line as shown in fig below. $\int -\frac{(x_1) + 2(x_2 + \alpha)e^{-x_1}}{(x_1 + \alpha)e^{-x_2}} de^{-x_1}$ Generator: X1= X2 = 0.15 p.u, X0=0.1 p.u, Transformer: X1= X2 = X0= 0.12 p.u, Line: X1= X2 = 0.25 p.u, X0=0.75 p.u. Equivalent system: X1= X2 = X0= 0.15 p.u, Obtain the sequence network	Applying K3	CO3	2
10.	Obtain the zero sequence impedance networks of a transformer for the following connections. $i \ge 1 - 1 \ge 1 \ge 2 - 1 \ge 2 = 1 \ge 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$	Applying K3	CO3	2

Course Incharge

1

Į.

1

ł

1

ł

)

1

Head of the Department