h. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

DEPARTMENT OF CIVII ENGINEERING SESVION: 2021-2022 (EVEN SEMESTER) I SESSIONAI TEST QUESTION PAPER SET.A

Note: Answer ONE full question from each part.

Q	Question	Marks	K- Level	CO mapping

PART-A

Primcipat
Principal. Director
4. S School of Enginieering \& Manane

Bangafore: 560062
K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

DEPARTMENT OF CIVIL ENGINEERING
SESSION: 2021-2022 (EVEN SEMESTER)
I SESSIONAL TEST QUESTION PAPER
SET-B

Note: Answer ONE full question from each part.

Note: Answer ONE full question from each part.							
$\begin{gathered} Q \\ \text { No. } \end{gathered}$	Question				Marks	KLevel	$\begin{gathered} \mathrm{CO} \\ \text { mapping } \end{gathered}$
PART-A							
1(a)	Define the following terms: i. Trigonometric Levelling ii. Plunging iii. Swinging the Telescope iv. Single Plane Method. v. Telescope Invert.				5	K1 Remembering	CO1
(b)	Explain the measurement of horizontal angle by repetition method.				5	K2 Understanding	COI
(c)	Explain the following: i) Focal length ii) Principal point iii) Tilt iv) Exposure station v) Flying height				5	K2 Understanding	CO2
OR							
2(a)	Define the following terms: i. Centering ii. Double Plane Method iii. Face Left Observation iv. Telescope Normal v. Theodolite				5	K1 Remembering	CO1
(b)	Explain the measurement of horizontal angle by reiteration method.				5	K2 Understanding	COI
(c)	Differentiate between the aerial photograph and map.				5	$\begin{gathered} \text { K2 } \\ \text { Understanding } \end{gathered}$	CO2
PART-B							
3(a)	Derive the exp height and the plane method instrument stat	ression for th elevation of when A instr n.	horizontal naccessible nt station	tance, vertical ject by single higher than B	5	K3 Applying	$\mathrm{CO1}$
(b)	Find the elevation of the top of a chimney (Q) from the following data. Station A \& B and the top of the chimney are in the same vertical plane.				5	K3 Applying	CO1
	Instrument Station	Reading on B.M	Vertical Angle	Remarks			
	A	2.870	$28^{\circ} 42^{\prime}$	$\begin{gathered} \text { R.L of B.M } \\ 325.000 \mathrm{M} \\ \text { Distance } \\ \mathrm{AB}= \\ 100 \mathrm{~m} \end{gathered}$			
	B	3.750	$18^{\circ} 06^{\prime}$				

Principal
Pitncipal/ Director
Q.s Jschool of Engineering \& Iilanager

Banigalore-560 052
K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109

DEPARTMENT OF CIVIL ENGINEERING
SESSION: 2021-2022(EVEN SEMESTER)
I SESSIONAL TEST SCHEME \& SOLUTION
SET-A

Degree	$:$	B.E	Semester	$:$ IV
Branch	$:$	Civil Engineering	Date	$:$
Course Title	$:$	Advanced Surveying	Course Code	$:$
18CV45				
Duration	$:$	90 Minutes	Max Marks	$:$

Note: Answer ONE full question from each part

| Q.
 No. | Questions with Scheme \& Solution | Marks |
| :--- | :--- | :--- | :--- |
| | Derive the expression for the horizontal distance, vertical height and the elevation of an
 inaccessible object by single plane method when instrument are at same level.. | |

8_{1} - Stafl rading on 1 M M from instrument station A
S.- Staff iwoling on II M from instrument station II
Q^{\prime} - Projection of Q , 8 h horizontal plane through A
$\mathrm{Q}^{\prime \prime}$ - Projection of O on horisontal plane through II
h_{1} - Height of the Q above the horizontal plane through A
h. - Height of the Q above the horizontal plane through if
d- Horizontal distance lerween A and B
$D_{1}=$ Horizontal distance becween Δ and Q_{1}
$\mathrm{D}^{-}-$Honizental distance between B and Q_{1}

Calculation:

In the triangle ABQ_{1}
Horizontal Angle $\theta_{3}=180^{\circ}-\left(\theta_{1}+\theta_{2}\right)$
Apply sine rule,
$\mathrm{AQ}_{1} / \operatorname{Sin} \theta_{2}=\mathrm{BQ}_{1} / \operatorname{Sin} \theta_{1}=\mathrm{AB} / \operatorname{Sin} \theta_{3}$
$A Q_{1}=D_{1}=\left(d / \operatorname{Sin} \theta_{3}\right) \times \operatorname{Sin} \theta_{2}$
$B Q_{1}=D_{2}=\left(d / \operatorname{Sin} \theta_{3}\right) \times \operatorname{Sin} \theta_{1}$
$\mathrm{h}_{1}=\mathrm{D}_{1} \mathrm{x} \tan \dot{d}_{1}$
R.L. of $Q=$ R.L of $B . M_{1}+S_{1}+h_{1}$

Check:

$\mathrm{h}_{2}=\mathrm{D}_{2} \mathrm{x} \tan \mathrm{d}_{2}$
R.L of $Q=$ R.L of B.M. $+S_{2}+h_{2}$
(b) Determine the top of a tower from the following observations and also the distances
from B. Station B \& A and the top of the tower are in the same vertical plane.

Instrument at	Reading on B.M	Vertical Tower	R.L of B.M	Distance between A $\& ~ B$
B	3.525 M	$16^{\circ} 30^{\circ}$	325.000 M	50 M
A	2.000 M	$10^{\circ} 30^{\circ}$		

Solution: Given Data:
$\mathrm{S} 1=3.525 \mathrm{~m}, \mathrm{~S} 2=2.000 \mathrm{M}, \mathrm{d}=50 \mathrm{M}$, R.L OF B.M $=325.000 \mathrm{M}, \mathrm{al}=16^{\circ} 30^{\circ}, \alpha_{2}=10^{\circ} 30^{\circ}$
Since the instrument axis B is higher than A.
The distance equation is given by $D=\left(\right.$ dtan $\left.\alpha_{2}-S\right) /\left(\tan \alpha_{1}-\tan \alpha_{2}\right)$
$\mathrm{S}=\mathrm{S} 1-\mathrm{S} 2=3.525-2.000=1.525 \mathrm{M}$
$\mathrm{D}=\left(50 \mathrm{X} \tan 10^{\circ} 30^{\circ}-1.525\right) /\left(\tan 16^{\circ} 30^{\circ} \cdot \tan 10^{\circ} 30^{\circ}\right)=69.74 \mathrm{M}$
$\mathrm{D}=69.74 \mathrm{M}$
Height of top of tower above the instrument axis B
$h_{1}=\tan a_{1}=69.74 \times \tan 16^{\circ} 30^{\circ}=20.66 \mathrm{M}$
$h_{1}=20.66 \mathrm{M}$
R.L to the top of the tower $=$ R.L of B.M $+S_{1}+h_{1}=325.000+3.525+20.66$

Check: of top of tower above the instrument axis A
Height
$\mathrm{h}_{2}=(\mathrm{D}+\mathrm{d}) \times \tan \mathrm{a}_{2}=(69.74+50) \times \tan 10^{\circ} 30^{\prime}=22.19 \mathrm{M}$
$h_{1}=22.19 \mathrm{M}$ of the tower $=$ R.L of B.M $+S_{2}+h_{2}=325.000+2.000+22.19$
R.L to the top
ii) Flying height iii) Focal length
iv)

Explain the following: i) Exposure station
ii) Flying height: is the elevation of the exposure station above sea level or any other selected datum.
iii) Focal length: It is the distance from the front nodal point of the lens to the plane of
the photog strikes the photograph. (Also, it is the foot of a perpendicular to the image plane from the rear nodal point in a camera lens system free from manufacturing errors). This principal point is coincide with the intersection of the x-axis and y-axis.
v) Nadir point: is appoint where a plumb line dropped from the front nodal point pierces the photograph. This point is also known as the photo nadir or photo plumb point.

PART-B

Explain the measurement of horizontal angle by reiteration method.

1. Set up the instrument over the station O and do al the temporary adjustments. Keep the vertical circle to the left.
2.Set the vernier A to zero using the upper clamp and its tangent screw, 3.Loosen the lower clamp and direct the telescope to the signal at P . clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. 4. Loosen the upper clamp and tum the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw.
2. Read both vemiers. Mean of the vernier readings gives the horizontal angle POQ. 6. Loosen the upper clamp again and turn the telescope clockwise until the signal at R is bisected. Use the upper tangent screw for exact bisection. Read both the vemiers an determine the angle QOR. The angle QOR is obtained by finding the difference between the readings to R and Q .
3. Similarly, determine the angles ROS
4. Finally, sight the signal P and read both the verniers. Vernier A should now read 0° or 360°. If not, note the reading and find the error due to slip, ete. If the errors small, distribute it equally to all angles. If the error is large, repeat the above procedure and take a fresh set of readings
${ }^{9}$. Change the face of the instrument to right face. Repeat the process in step 2.
5. Loosen the upper clamp screw, rotate the telescope counter clock wise (swing leff)
and sight the station S. clamp the upper clamp and bisect the signal S exactly using the upper tangent screw. Read both the verniers and determine the angle POS
6. Similarly, determine the angles SOR, ROQ and QOP by rotating the telescope in the counter clock wise direction. Distribute the error, if any, equally among all the angles.
7. Determine the average value of each angle obtained with the face left and the face right.
8. Record all the observations in the tabular form shown for the angle measured by this
method.

Explain the measurement of horizontal angle by repetition method

Procedure:

1. Two points one on each of the lines say, P and Q are to be marked.
2. A transit theodolite is to be set at the point of intersection of the line say at O . Initially the instrument is in the face left condition and its temporary adjustment is done over the
point O.
(b)
3. Both the upper and lower plate main screws are to released and get the vernier A to set to 0^{0} mark on the main scale. After the clamping the upper main screw, index of the vernier. A is to be brought exactly to the zero to the main scale using the upper plate tangent screw
4. At tis stage the reading of the vernier B should be 360°.
5. Swing the telescope in the horizontal plane and the point it to be left say,P. Tighten the lower plate clamp screw, and bisect the signal at P exactly using the lower plate tangent screw.
6. Loosen the upper plate main screw and turn the telescope the signal at Q is sighted.

Tighten the upper clamp screw and bisect the ranging pole at Q exactly using the upper plate tangent screw.
7. Read both the vernier A and B and record the readings. The reading of the vernier A is the angle POQ. The vernier B gives the value of the angle POQ after deducting from it 180°. The mean of the two values of the angles obtained from the vernier A and B is required angle POQ .
8. Change the face of the instrument to the face right by transiting the telescope and swinging the telescope through 180°.
9. Repeat the step 3 to 8 and determine another value of the angle POQ.
10. The mean of the face left and face right observation is the final reading angle $P O Q$

Sine $A B$ measures 11 cm on a photograph taken with a camera having a focal length of 215 cm . The same line measures 3 cm on a map drawn to scale of $1 / 45,000$. Calculate the flying height of the aircraft, if the average altitude is 350 m .

Solution:
Photo Scale Photo distance of line ab
$\frac{\text { Photo Scale }}{\text { Map Scale }}-\frac{\text { Photodistance of line AB }}{\text { Map distance of lin }}$
(c)
$\frac{5}{1 / 45,000}=\frac{11}{3}$
$\mathrm{S}=\frac{11}{3} \times \frac{1}{45.000}=\frac{1}{12.2723}$
Photo scale $=\frac{\mathrm{C}}{\mathrm{H}-\mathrm{h}}=\frac{0.215}{\mathrm{H}-350}$
$\mathrm{H}=2,638.69+350=2,988.69 \mathrm{~m}$

OR

Explain the following terms:
i. Centering: The process of the setting the theodolite exactly over the station mark is known as Centering.
ii. Double Plane Method: If the chosen two instrument stations do not lie in the same vertical plane passing through the elevated object, then it is known as double plane method.
iii. Face Left Observation: If the face of the vertical circle is to the left of the observer, the observation of the angle is known as face left observations.
iv. Telescope Normal: A telescope is said to be normal, when the vertical circle is to the face left and the "bubble up".
v. Theodolite: The theodolite is the most accurate instrument used mainly for measuring the horizontal and vertical angles. It can also be used for locating points on a line, prolonging survey lines, finding the difference in elevations, setting out of grades, ranging curves, etc.
Explain the following terms:
i. Trigonometric Levelling: It is defined as the process of determining the difference of elevations of stations from observed vertical angles and known distances, which are assumed to be either horizontal or geodetic lengths at mean sea level.
ii. Plunging: It is the process of turning the telescope in the vertical plane through 180 degree about trunnion axis.
(b) iii. Swinging the Telescope: It is the process of turning the telescope in the horizontal plane. If the telescope is rotated in the clock wise direction, known as right swing. If the telescope is rotated in the anti clock wise direction, known as left swing.
iv. Single Plane Method: It is defined as if the two instrument stations so chosen lie in the same vertical plane passing through the elevated object.
v. Telescope Invert: A telescope is said to be normal, when the vertical circle is to the face right and the "bubble down".
A section line AB appears to be 10.16 cm on a photograph for which the focal length is 16 cm . The corresponding line measures 2.54 cm on a map which is to a scale $1 / 50,000$. The terrain has an average elevation of 200 m above mean sea level. Calculate the flying altitude of the aircraft above the mean sea level, when the photograph was taken.
(c) Solution:
$\underline{\text { Photo Scale }}=\underline{\text { Photo distance of line } \mathrm{ab}}$
$\overline{\text { Map Scale }}$ Map distance of line $A B$
Here, map scale $=1 / 50,000$; Let the photo scale be $1 / n$
$5 \times 1=$

$$
\begin{aligned}
& \frac{\frac{1}{n}}{\frac{1}{50,000}}=\frac{10.16}{2.54} \\
& 1 / \mathrm{n}-\frac{10.16}{254} \times \frac{1}{50,000}=\frac{1}{12,500} \text { or } \mathrm{n}=12,500
\end{aligned}
$$

Again, $S_{200}=\frac{1}{\eta}=\frac{1}{N-\lambda}$ or $\frac{1}{12500}=\frac{\left(\frac{16}{120}\right)}{(N-200) m}$
$\therefore \mathrm{H}=2000+200=2,200 \mathrm{~m}$

DEPARTMENT OF CIVIL ENGINEERING
SESSION: 2021-2022(EVEN SEMESTER)
I SESSIONAL TEST SCHEME \& SOLUTION
SET-B

Degree	$:$	B.E	Semester	$:$
Branch	$:$	Civil Engineering	Date	$:$
Course Title	$:$	Advanced Surveying	Course Code	$:$
18CV45				
Duration	$:$	90 Minutes	Max Marks	$:$

Note: Answer ONE full question from each part

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Questions with Scheme \& Solution	Marks
PART-A		
1(a)	Define the following terms: i. Trigonometric Levelling: It is defined as the process of determining the difference of elevations of stations from observed vertical angles and known distances, which are assumed to be either horizontal or geodetic lengths at mean sea level. ii. Plunging: It is the process of turning the telescope in the vertical plane through 180 degree about trunnion axis. iii. Swinging the Telescope: It is the process of turning the telescope in the horizontal plane. If the telescope is rotated in the clock wise direction, known as right swing. If the telescope is rotated in the anti clock wise direction, known as left swing. iv. Single Plane Method: It is defined as if the two instrument stations so chosen lie in the same vertical plane passing through the elevated object. v. Telescope Invert: A telescope is said to be normal, when the vertical circle is to the face right and the "bubble down".	$\begin{gathered} 5 \times 1 \\ =5 \end{gathered}$
(b)	Explain the measurement of horizontal angle by repetition method. Procedure: 1. Two points one on each of the lines say, P and Q are to be marked. 2. A transit theodolite is to be set at the point of intersection of the line say at O . Initially the instrument is in the face left condition and its temporary adjustment is done over the point O. 3. Both the upper and lower plate main screws are to released and get the vernier A to set to 0^{0} mark on the main scale. After the clamping the upper main screw, index of the vernier. A is to be brought exactly to the zero to the main scale using the upper plate	02

	tangent screw. 4. At tis stage the reading of the vernier B should be 360°. 5. Swing the telescope in the horizontal plane and the point it to be left say,P. Tighten the lower plate clamp screw, and bisect the signal at P exactly using the lower plate tangent screw. 6. Loosen the upper plate main screw and turn the telescope the signal at Q is sighted. Tighten the upper clamp screw and bisect the ranging pole at Q exactly using the upper plate tangent screw. 7. Read both the vernier A and B and record the readings. The reading of the vernier A is the angle $P O Q$. The vernier B gives the value of the angle POQ after deducting from it 180°. The mean of the two values of the angles obtained from the vernier A and B is required angle POQ . 8. Change the face of the instrument to the face right by transiting the telescope and swinging the telescope through 180°. 9. Repeat the step 3 to 8 and determine another value of the angle POQ. 10. The mean of the face left and face right observation is the final reading	
(c)	Explain the following: i) Focal length ii)Principal point iii) Tilt iv) Exposure station v)Flying height i) Focal length: It is the distance from the front nodal point of the lens to the plane of the photograph. It is also the distance of the image plane from the rear nodal point. ii) Principal point: is a point where a perpendicular dropped from the front nodal point strikes the photograph. (Also, it is the foot of a perpendicular to the image plane from the rear nodal point in a camera lens system free from manufacturing errors). This principal point is coincided with the intersection of the x-axis and y-axis. iii) Tilt: is the vertical angle defined by the intersection, at the exposure station, of the optical axis with the plumb line. iv) Exposure station: is a point in space, in the air, occupied by the camera lens at the instant of exposure. Precisely, it is the space position of the front nodal point at the instant of exposure. v) Flying height: is the elevation of the exposure station above sea level or any other selected datum.	5
	OR	
2(a)	Define the following terms: i. Centering: The process of the setting the theodolite exactly over the station mark is known as Centering. ii. Double Plane Method: If the chosen two instrument stations do not lie in the same vertical plane passing through the elevated object, then it is known as double plane method. iii. Face Left Observation: If the face of the vertical circle is to the left of the observer, the observation of the angle is known as face left observations. iv. Telescope Normal: A telescope is said to be normal, when the vertical circle is to the face left and the "bubble up". \mathbf{v}. Theodolite: The theodolite is the most accurate instrument used mainly for measuring the horizontal and vertical angles. It can also be used for locating points on a line, prolonging survey lines, finding the difference in elevations, setting out of grades, ranging curves, etc.	$\begin{gathered} 5 \times 1 \\ =5 \end{gathered}$
(b)	Explain the measurement of horizontal angle by reiteration method	

	1. Set up the instrument over the stat the vertical circle to the left. 2.Set the vernier A to zero using the 3.Loosen the lower clamp and direct clamp and bisect P accurately using 4. Loosen the upper clamp and turn bisected. Clamp the upper clamp and 5. Read both verniers. Mean of the v 6. Loosen the upper clamp again and bisected. Use the upper tangent scre determine the angle QOR. The angle the readings to R and Q . 7. Similarly, determine the angles ROS 8. Finally, sight the signal P and read 360°. If not, note the reading and find distribute it equally to all angles. If the take a fresh set of readings. 9. Change the face of the instrument 10. Loosen the upper clamp screw, ro and sight the station S. clamp the upp upper tangent screw. Read both the v 11. Similarly, determine the angles S counter clock wise direction. Distribu 12. Determine the average value of e right. 13. Record all the observations in the method.	ion O and do al the temporary adjustments. Keep upper clamp and its tangent screw, the telescope to the signal at P. clamp the lower he lower tangent screw. Read both the verniers. he telescope clockwise until the signal at Q is bisect Q exactly using the upper tangent screw. ernier readings gives the horizontal angle POQ. urn the telescope clockwise until the signal at R is for exact bisection. Read both the verniers an QOR is obtained by finding the difference between S. both the verniers. Vernier A should now read 0° or the error due to slip, etc. If the errors small, e error is large, repeat the above procedure and o right face. Repeat the process in step 2. tate the telescope counter clock wise (swing left) er clamp and bisect the signal S exactly using the erniers and determine the angle POS. OR, ROQ and QOP by rotating the telescope in the te the error, if any, equally among all the angles. ch angle obtained with the face left and the face tabular form shown for the angle measured by this	03
(c)	Differentiate between the aerial photograph and map.		
	Map	Aerial Photograph	5
	1.Map is an orthogonal Projection	1. Aerial photograph is a central projection i.c perspective projection	
	2. Map has a single constant scale	2. Aerial photograph varies from point depending upon their elevations	
	3. The amount of detail on a map are selective.	3. In an aerial photograph information is more.	

	4. Due to symbolic representation of the clarity of details is more on maps. 4. No symbolic representation is there in the photo.	
Derive the expresion PART-B		
3(a)	Derive the expression for the horizontal distance, vertical height and the elevation of an inaccessible object by single plane method when A instrument station is higher than B instrument station. when the instrument axis at A is higher than that at B $\dot{\alpha}_{1}=$ Angle of elevation at A $\dot{a}_{2}=$ Angle of elevation at B $\mathrm{S}_{1}=$ Staff reading on B.M from instrument station A. $\mathrm{S}_{2}=$ Staff reading on B.M from instrument station B $Q^{\prime}=$ Projection of Q on horizontal plane through A, $Q^{\prime \prime}=$ Projection of Q on horizontal plane through B^{\prime} $h_{1}=$ Height of the Q above the horizontal plane through A, $h_{2}=$ Height of the Q above the horizontal plane through B^{\prime} $\mathrm{d}=$ Horizontal distance between A and B $D=$ Horizontal distance between A and Q From the triangle $A^{\prime} Q^{\prime} Q$, $h_{1}=D x \tan \dot{\alpha}_{1}$ \qquad from the triangle $B^{\prime} Q^{\prime} Q$, $\begin{equation*} \mathrm{h}_{2}=(\mathrm{d}+\mathrm{D}) \tan \dot{\alpha}_{2} \ldots \ldots \text { (2) } \tag{1} \end{equation*}$ Subtracting equation (2) from (1) $\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{Dx} \tan \dot{\alpha}_{1}-(\mathrm{d}+\mathrm{D}) \tan \dot{\alpha}_{2}$ $=\mathrm{D}\left(\tan \dot{\alpha}_{1}-\tan \dot{\alpha}_{2}\right)-\mathrm{Dx} \tan \dot{\alpha}_{2}$ But $h_{2}-h_{1}=$ difference in levels of instrument axes $=\mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{S}$ Therefore $\mathrm{D}\left(\tan \dot{\alpha}_{1}-\tan \dot{\alpha}_{2}\right)-\mathrm{dx} \tan \dot{\alpha}_{2}=\mathrm{S}$ Or $D\left(\tan \dot{\alpha}_{1}-\tan \dot{\alpha}_{2}\right)=\mathrm{S}+\mathrm{d} \tan \dot{\alpha}_{2}$ $\mathrm{D}=\left(\mathrm{dxtan} \dot{\alpha}_{2}-\mathrm{S}\right) /\left(\tan \dot{\alpha}_{1}-\tan \dot{\alpha}_{2}\right)$ Substituting the value of D in the equation 1 and 2 to find h_{2} and h_{1} $\mathrm{h}_{1}=\mathrm{Dx} \tan \dot{\alpha}_{1}$ $\mathrm{h}_{2}=(\mathrm{d}+\mathrm{D}) \tan \dot{\alpha}_{2}$ Therefore R.L of $Q=$ R.L of B.M $+S_{1}+h_{1}$ R.L of $Q=$ R.L of B.M $+S_{2}+h_{2}$	02

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{MB}_{1}=\mathrm{D}_{1}=\left(50 \operatorname{Sin} \theta_{3}\right) \times \operatorname{Sin} \theta_{2} \\
\&=\left(50 \operatorname{Sin} 42^{\circ} 5^{\prime}\right) \times \operatorname{Sin} 72^{\circ} 30^{\circ} \\
\& \mathbf{D}_{1}=71.15 \mathrm{~m} \\
\& \mathrm{BQ}_{1}=\mathrm{D}_{2}=\left(\mathrm{d} \operatorname{Sin} \theta_{3}\right) \times \operatorname{Sin} \theta_{1} \\
\&=\left(50 \operatorname{Sin} 42^{\circ} 5^{\prime}\right) \times \operatorname{Sin} 65^{\circ} 25^{\circ} \\
\& \mathrm{D}_{2}=67.84 \mathrm{~m}
\end{aligned}
\] \\
Height of top of the of the flag above the instrument axis through A \\
\(h_{1}=D x \tan \alpha_{1}=71.15 x \tan 12^{\circ} 14^{\prime} 2^{\prime \prime}=15.43 \mathrm{~m}\) \\
R.L. to the top of the church spire \(=\) R.L. of B.M \(+\mathrm{S}_{1}+\mathrm{h}_{1}-3=200.000+1.785+15.43-3\) \\
R.L. to the top of the hill \(=214.215 \mathrm{~m}\) \\
Check: \\
Height of top of the flag above the instrument axis through A \\
\(\mathrm{h}_{1}=\mathrm{Dx} \tan \alpha_{2}=67.84 \times \tan 12^{\circ} 34^{\prime} 32^{\prime \prime}=15.13 \mathrm{~m}\) \\
R.L. to the top of the hill \(=\) R.L. of B.M \(+\mathrm{S}_{1}+\mathrm{h}_{1}-3=200.000+2.305+15.13-3=\) 214.435 m \\
R.L. to the top of the hill \(=\mathbf{2 1 4 . 4 3 5} \mathrm{m}\)
\end{tabular} \& 3 \\
\hline (c) \& \begin{tabular}{l}
A vertical photograph was taken at an altitude of 1200 m above mean sea level. Calculate the scale of the photograph for terrain lying at elevations of 80 m and 300 m if the focal length of the camera is 15 cm . \\
Solution: \\
The scale at any height \(h\) is given by
\[
S_{h}=\frac{f}{H-h}
\] \\
When h is 80 m
\[
\begin{aligned}
\& S_{80}=\frac{15 \mathrm{~cm}}{1200-80}=\frac{1 \mathrm{~cm}}{74.67 \mathrm{~m}} \\
\& \therefore 1 \mathrm{~cm}=74.67 \mathrm{~m}
\end{aligned}
\] \\
When h is 300 m
\[
\begin{aligned}
\& S_{300}=\frac{15 \mathrm{~cm}}{1200-300}=\frac{1 \mathrm{~cm}}{60 \mathrm{~m}} \\
\& \therefore 1 \mathrm{~cm}=60 \mathrm{~m}
\end{aligned}
\]
\end{tabular} \& 2

3

\hline
\end{tabular}

