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 Compressive sampling/compressed sensing (CS) is building on the 

observation that most of the signals in nature are sparse or compressible 

concerning some transform domain. And by converse, the same can be 

reconstructed with high accuracy by making use of far fewer samples than 

what is required by violating Shannon-Nyquist theorem. Some of the 

transform techniques are discrete cosine transform, fast fourier transforms 

discrete wavelet transform, discrete fourier transforms. In this paper, novel CS 

techniques are FFTCoSAMP, DCTCoSaMP, and DWTCoSaMP are 

introduced and compared on different sparse transforms for CS in magnetic 

resonance (MR) images based on sparse signal sequences/dictionaries by 

means of transform techniques with respect to objective quality assessment 

algorithms like PSNR, SSIM and RMSE, where CoSaMP stands for 

compressive sampling matching pursuit. DWTCoSaMP is giving the PSNR 

values of 37.16 (DB4), 38.12 (Coif3), 38.5 (Sym8), for DCTCoSaMP and 

FFTCoSaMP, it’s 36.33 and 36.01 respectively. For DWTCoSaMP, SSIM 

value is 0.81, and for DCTCoSaMP and FFTCoSaMP, it’s 0.73 and 0.7 

respectively. And finally, for DWTCoSaMP, RMSE value is 0.66, and for 

DCTCoSaMP and FFTCoSaMP, it’s 0.53 and 0.41 respectively. 

DWTCoSaMP reveals the best than rest of the methods and traditional CS 

techniques by the detailed comparison and analysis. 
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1. INTRODUCTION 

A signal can be completely rebuilt using a linear reconstruction method if it is sampled at equal intervals 

and bandlimited by less than the sampling rate. The frequency range and sample rate spanned by the signal are 

used to reconstruct the signal. The signals can be captured and modeled by several mathematical approaches. One 

such kind of approach is the compressed sensing (CS) technique [1]-[8]. CS assumes the signal to be sparse. For 

a two-dimensional signal, most of the entries in its vector space are zeros. So, it is called as sparse vector space 

for limited dimensional signal. Sparse vector doesn’t have itself to be consist of signal of interest but it can be 

equally well represented by some basic functions like wavelet or fourier transforms. 

Let’s consider a set of vectors {x} that are linearly dependent and if there are scalars that not at all 

zeros is given by (1) ∑   
𝑖 𝜆𝑖𝑥𝑖 = 0. Then set of vectors {xi} are linearly independent and orthogonal. If the inner 

product of any two vectors in the set is zero, then it is called orthogonal. Sparsity is an important and more 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:mddeepak1986@gmail.com
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powerful concept in the field of mathematics and computer science. Consider an N-dimensional x, it can be 

expressed by a linear super position of K<<N elementary signal quantities for some error e and e(k) called 

sparse for the vector 𝛼. K quantize 𝜓𝑘 are collected from a dictionary in turn which is represented by N x D 

matrix with D>=N [2]. 

 

 𝑥 = ∑  𝐾
𝑘=1 𝛼𝑘𝜓𝑘  𝑖𝑛 ||𝑥 − 𝑥𝑘||2  ≤ 𝑒(𝑘) (1) 

 

The exact sparsity can be represented by y=Ψx, [9]-[11] where Ψ is an orthonormal basis, x is the input 

signal. Some of the dictionary representations are fast fourier transforms (FFT), discrete cosine transform (DCT), 

and discrete wavelet transform (DWT). FFT [12] of the signal xk of the signal yk is given by (2). 
 

 𝑋𝑘 = 1/𝑠𝑞𝑟𝑡(𝑛) ∑  𝑁
𝑗=1 𝑌𝑘  𝑒𝑥𝑝(−2𝜋(𝑗 − 1)(𝑘 − 1)𝑖/𝑁) (2) 

 

By assuming the sparse version of signal X [13] in which all significant entries are set to zero. We can use this 

sparse vector Z to approximate the original signal. 𝛿𝑌 = 𝑌 − �̅�  =  𝐹(̅̅ ̅𝑋 − 𝑍) we can make of Z to 

approximately predict y. 𝑍 → Y̅ ≈ Y → y. As we know the locations of non-vanishing entries in the sparse 

vector, only fractions of samples in Y are used to recreate Z [14] as in (3). 

 

Then 𝑦𝑚 = �̅�𝑚𝑋𝑚𝑍𝑚 = �̅�𝑚𝑋𝑁𝑍 (3) 

 

Where ym ∈ Rm, Zm ∈ Rm, FmXm ∈RmXm,F̅mXN∈RmXN. are got by removing the rows/columns of the vanishing 

entries in Z. And so, we can recreate by sampling m<N points at specific locations which may go faraway less 

than the Nyquist rate [15]. ym = 𝐹m x N Z, in which the sample in Z are less than the length of the sparse vector. 

The relationship between the discrete representation of y and fourier transform is given by X=FY where F 

being the DFT dictionary, 𝑋 = {𝑋𝑘}𝑘=1
𝑁 ∈ 𝑅𝑛 and 𝑌 = {𝑌𝑘}𝑘=1

𝑁 ∈ 𝑅𝑛. The inverse way of producing the signal 

𝑌 = �̅�𝑋, where �̅� is transpose of the F (inverse of DFT) and X is called the compressible vector or sparse 

vector. In this case of signal X, the signal energy is not distributed equally over the spectrum. So, it is 

approximated by reduced representation. DCT [16] is considered as the discrete-time version of the fourier 

cosine series as shown mathematically (4). DCT estimates the real approximation of the signal with less 

coefficients. 

 

D((I,j)= (1/√2NC(i),C(j) ∑  M-1
0 ∑ 𝑝(𝑥, 𝑦)N-1

0  cos[
(2x+1)iπ

2N
⁄ ] cos[(

2y+1)iπ
2N

⁄ ] (4) 

 

Otherwise, C(u)=C(v)=1. The pixel in the image represented by the M x N matrix is p (x, y). DCT is 

applied on a block of size N, and f(x, y) is the N x N input image. The encoded or transformed image of f(x,y) is 

F(u,v). DWT [17], [18] decomposes the signal into approximation and detailed subbands. The detailed 

subbands are having the much information about the image. They are called as high significant components of 

the signal. Approximate subbands are the least significant components of the mages. The least significant 

components are nothing but the edges present in the image. There are different types of wavelet families like. 

Haar, Dabhache, and symmetric. We have experimented with Haar wavelet transforms. The general wavelet 

transform is (5) and (6). 

 

  𝐹𝐻𝑖𝑔ℎ 𝑃𝑎𝑠𝑠(𝑚, 𝑛)=∫ 𝑓(𝑥)𝛹(𝑚,𝑛)
∗ (𝑡)𝑑𝑡

∞

−∞
 (5) 

 

  𝐹𝐿𝑜𝑤 𝑃𝑎𝑠𝑠(𝑚, 𝑛)=∫ 𝑓(𝑥)𝛷(𝑚,𝑛)
∗ (𝑡)𝑑𝑡

∞

−∞
 (6) 

 

High pass filter 𝐹𝐻𝑖𝑔ℎ 𝑃𝑎𝑠𝑠(𝑚, 𝑛) passes through high-frequency components and low pass filter 

𝐹𝐿𝑜𝑤 𝑃𝑎𝑠𝑠(𝑚, 𝑛) passes through low-frequency components. * is a conjugate symbol. In (5) represents the 

wavelet function given by Ψ’ and in (6) represents the scaling function given by Φ’. f(x) is the input signal. 

The input signal is represented by f(x). The wavelet transform has some advantages: i) wavelet transforms at 

higher levels avoid blocking artifacts, ii) well matched to Herpes simplex virus (HSV) characteristics, and iii) 

wavelet provides higher level of decomposition.  

Let A denote the m x N sampling matrix with the restricted isometry criterion (RIC) δ2s <=c [19]. Let 

consider a signal f that is sparse, x has only K non-zero entries. f=ψ x, where ψ is some transform domain [20], 

[21]. The measurement vector can be obtained as 𝑦 = 𝜙𝑓 = 𝜙𝜓𝑥 = 𝐴𝑥 . A is called the measurement matrix 

and 𝜙 is called the sampling matrix. The sparse vector can be reconstructed by solving the linear equation 

y=Ax [22]-[24]. 
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2. PROPOSED METHODS 

The compressive sampling matching pursuit (CoSaMP) [25], [26] is a compressed sensing technique 

based on orthogonal matching pursuit. It must fulfill the following requirements: i) it must begin with the least 

sample data possible. ii) It should progress by taking into account samples from various sampling strategies. 

iii) It must accept all samples that have been combined with noise and must be resilient. Novel CS techniques 

DCTCoSaMP, FFTCoSaMP, and DWTCoSaMP are proposed in this paper to recover the original signal from 

the sparse or incomplete signal components. Finally, using the peak signal-to-noise ratio (PSNR), structured 

similarity indexing method (SSIM) and root mean square error (RMSE) approaches, the restoration of magnetic 

resonance imaging (MRI) images is analyzed and compared. 

 

2.1.  Orthonormal bases 

Assume set B. B has a set of vectors, viz. B=v1, v2, ......vk, each of which has a length of 1. ||vi||=1 

for i=1, 2,...k. or vi. vi=1 or ||vi||2=1for i=1,2,3......k. All of the vectors in B have a length of one, indicating 

that they all have been scaled and are unit vectors. Any two vectors in the collection have a dot product of zero, 

i.e. vi. vj=0 for i and j. These vectors are all orthogonal and have the same length and are normalized. As a 

result, set B is considered too as orthonormal. The term orthogonal points that all of the set's components are 

orthogonal and normalized. 

CoSaMP is an orthogonal matching pursuit-based (OMP-based) encoding/decoding approach. 

Because of one of the compressed sensing techniques, CoSaMP has gotten a lot of interest today. The CoSaMP 

method accepts a K-sparse signal array as input. The measurement grid should be accepted. Finally, it should 

also accept the criterion for halting. The CoSaMP [27]-[29] is a greedy matching pursuit algorithm. 

 

2.2.  Algorithm CoSaMP (M, phi, s) 

The algorithm begins with a basic signal approximation, in which the starting leftover signal equals 

the unknown target signal. It functions through 5 important phases throughout each iterative process:  

i) identification: from the available samples, the algorithm creates a substitute of the residual and locates the 

significant components of the substitute; ii) support merger: the newly discovered components are combined 

with the components found in the present estimation; iii) estimation: to estimate the target signal on the merged 

set of components, the method performs a least-squares problem; iv) pruning: by preserving just the biggest 

elements in this least-squares signal approximation, the method creates a new approximation;  

v) sample update: finally, the samples are updated to represent the residual signal, which is the portion of the 

signal that has not been estimated or approximated. 

Figure 1 depicts the recommended architecture for the proposed approaches. The system receives an 

MRI image as input, and uses dictionary extraction methods including FFT, DCT, and DWT to leverage 

sparsity factors. The low and high-frequency components are included in the dictionary. Only low-frequency 

components, which signify incomplete or sparse components, are retained. Novel CS techniques DCTCoSaMP, 

FFTCoSaMP and DWTCoSaMP are proposed in this paper to recover the original signal from the sparse or 

incomplete signal components. Finally, using the PSNR, SSIM, and RMSE approaches, the restoration of MRI 

images is analyzed and compared. 
 

Imput: Significant coefficients to be selected M, random measurement matrix Phi, 

sparsity level s. 

Ouput: The target signal's s-sparse approximation 

Initialisation: f0 0 // initial approximation, y0y //Current samples = input 

samples, t0 

loop 

1. t  t + 1   // Increase the number of cycles each time. 

2. δ  M*y0    // Create a list of intermediates. 

3. B  supp(δ2s)  // Make a comprehensive collection of substitutes. 

4. Bt  B ∪ supp(ft-1)  // Promote a merger 

5. b|Bt  (MTt)+ Bt  // Least-squares signal estimate 

6. b|Bc 0  

7. ft  bk  // Shear/trim in order to get the next estimate 

8. y0  y - Aft // Renew the samples: 

till halting criterion holds 

f` ft 

 

The block diagram for DCTCoSaMP/FFTCoSaMP/DWTCoSaMP as shwon in Figure 2. The CoSaMP 

algorithm takes the input iage, where it calculates the automatic correlation, it means, it selects only the sparsity 

features present in the signal. And it selects the current set of preselected atoms (only a few k non-zero 

coefficients). Then merge sparse vector with measurement matrix to form the candidate atom set. Then least 

square methods are used to get the signal residuals. Shear or prune to obtain the supporting atom set in order to 

get the better estimation. Update the current final estimate and calculate the current residuals until stopping 
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criteria is met. If stopping criteria is not met, update the current residual and support set. And the whole process 

continues further.  

 

 

 
 

Figure 1. Architecture for the proposed methods 

 

 

 
 

Figure 2. Block diagram for FFTCoSaMP/DCTCoSaMP/DWTCoSaMP 

 

 

3. EXPERIMENTAL RESULTS 

In this article, six different types of MRI images like Glioma Tumor images, Brain Tumor images, 

Brain Tumorless images, no Brain Tumor images, Non Cancerous images, and Cancerous images as shown in 

Figure 3. The experimentation is conducted on about 2,000 MRI images. The dataset has been taken from some 

websites like www.kaggle.com and the state-run Victoria hospital, Bengaluru. We have experimented on 

different dimensions of measurement matrices like 256x210, 256x180, and 256x155. Among all these 

dimensions of measurement matrices, the dimension 256x210 is exploiting the best reconstruction and 

acceptable measurement matrix. For the 256x210 measurement matrix, the comparative results for different CS 

http://www.kaggle.com/
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techniques like FFTCoSaMP, DCTCoSaMP, and DWTCoSaMP are tabulated and analyzed through 

experimentation methods.  

Table 1 compares PSNR, SSIM, and RMSE values obtained from thorax MRI images and compared 

to some research articles using various compressed sensing approaches. The proposed methods FFTCoSaMP, 

DCTCoSaMP, and DWTCoSaMP provide better PSNR, SSIM, and MSE values than all of the references 

found in the literature review. The results of experimentation are tabulated.  

CS technique has been discussed in various papers as per the references mentioned in [26], [30]-[33]. 

Where PSNR values for different CS techniques including CoSaMP algorithm are discussed as per the 

experiments from various researchers, it is observed that PSNR values for my proposed methods are higher 

than the other CS techniques of the literature survey. Similarly, SSIM values for different CS techniques 

including CoSaMP algorithm are discussed as per the experiments from various researchers. It is observed that 

SSIM values for my proposed methods are higher than the other CS techniques of the references [34]-[37]. 

Finally, RMSE values for different CS techniques, are discussed as per the experiments from various 

researchers. It is observed that RMSE values for my proposed methods are lower than the other CS techniques 

of the literature survey [34]-[38]. 
 

 

 
Glioma Tumor 

MRI 

 
Brain Tumor MRI 

 
Brain Tumorless 

MRI 

 
Meningioma 

Tumor MRI 

 
Cancerous MRI 

 
Non-Cancerous 

MRI 
 

Figure 3. MRI images used for exploitation of 

various sparse dictionaries 

Table 1. PSNR, SSIM, and RMSE values for the 

proposed methods 
Objective quality 

assessments type  

Proposed 

methods 
Results 

PSNR FFTCoSaMP 36.01 
DCTCoSaMP 36.33 

DWTCoSaMP 37.16 (DB4) 
38.12 (Coif3) 

38.5 (Sym8) 
SSIM FFTCoSaMP 

DCTCoSaMP 

DWTCoSaMP 

0.7 
0.73 

0.81 

RMSE FFTCoSaMP 
DCTCoSaMP 

DWTCoSaMP 

0.66 
0.53 

0.41 
 

 

 

Table 2 shows the comparison of different compressive sampling techniques w.r.t. PSNR, SSIM and 

RMSE for different MR images like Glioma Tumor images, Brain Tumor images, Brain Tumorless images, no 

Brain Tumor images, non Cancerous images, and Cancerous images. As mentioned, the experiment is 

conducted on 2,000 MRI of of different categories of Glioma-Tumor images, Brain Tumor images, Brain-

Tumorless images, no_Brain_Tumor_images, non-Cancerous images, and Cancerous MR images. The average 

value of PSNR for all these images w.r.t. CS technique DWTCoSaMP is 33.0347, which is high when 

compared to other CS techniques like FFTDCoSaMP and DWTCoSaMP with PSNR values 26.6229 and 

27.7749 respectively. Similarly, the average value of SSIM for all these images w.r.t. CS technique 

DWTCoSaMP is 0.6373, which is almost equivalent to SSIM value 0.7136 of FFTCoSaMP and 0.4506 of 

DCTCoSaMP. Lastly the average value of RMSE for all these images w.r.t. CS technique DWTCoSaMP is 

0.0019, which is less when compared to other CS techniques like FFTCoSaMP and DCTCoSaMP with PSNR 

values 0.0451 and 0.0036 respectively. 
 

 

Table 2. Comparison of different compressive sampling techniques w.r.t. PSNR, SSIM, and RMSE for 

measurement matrix of dimension 210 X 256 

S
N 

Metrics PSNR SSIM RMSE 

MRI images 
FFTCo 

SaMP 

DCTCo 

SaMP 

DWTCo 

SaMP 

FFTCo 

SaMP 

DCTCo 

SaMP 

DWTCo 

SaMP 

FFTCo 

SaMP 

DCTCo 

SaMP 

DWTCo 

SaMP 

1 Glioma Tumor 
images 

26.7953 27.9552 32.9565 0.7021 0.4644 0.5938 0.0016 0.0019 0.0006 

2 Brain Tumor 
images 

26.1371 27.3214 32.7034 0.8534 0.4914 0.8423 0.2190 0.0021 0.0006 

3 Brain Tumorless 

images 

26.7877 27.7369 33.2316 0.4284 0.4251 0.5759 0.0016 0.0019 0.0006 

4 No Brain Tumor 

images 

26.9530 28.2062 33.3209 0.7264 0.4311 0.5891 0.0015 0.0053 0.0069 

5 Non-Cancerous 
images 

26.4417 27.6548 32.9611 0.8575 0.4412 0.5855 0.0017 0.0068 0.0006 

6 Cancerous 

images 

26.0886 27.3342 32.6845 0.4940 0.4915 0.8040 0.0018 0.0021 0.0049 

Average 26.6229 27.7749 33.0347 0.7136 0.4506 0.6373 0.0451 0.0036 0.0019 
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As tabulated in the Table 3, DWTCoSaMP is the best when compared to other CS techniques like 

FFTCoSaMP and DCTCoSaMP. The average values of PSNR for DWTCoSaMP are 32.9763, 32.1498, and 

28.7848 for different measurement matrices like 210 x 256, 180 x 256, and 155 x 256 respectively. Similarly 

The average values of PSNR for DCTCoSaMP are 27.7014 dB, 26.1703 dB, and 24.2075 dB for different 

measurement matrices like 210 x 256, 180 x 256, and 155 x 256 respectively. 

 

 

Table 3. PSNR based comparison of different compressive sampling algorithms under different dimensions 

of measurement matrices 

 
CS 

algorithms 
 DWTCoSaMP DCTCoSaMP FFTCoSaMP 

 S.N. 

Measurement 

matrix 
MRI images 

155 x 

256 

180 x 

256 

210 x 

256 

155 x 

256 

180 x 

256 

210 x 

256 

155 x 

256 

180 x 

256 

210 x 

256 

P

S
N

R 

1 Glioma Tumor 

images 

29.4521 32.7025 32.9565 24.0214 26.4812 27.9552 29.4521 25.0786 26.7953 

2 Brain Tumor 

images 

29.0123 31.8925 32.7034 24.1245 26.7891 27.3214 28.0123 24.9214 26.1371 

3 Brain 
Tumorless 

images 

29.4358 32.1245 33.2316 23.9754 26.2471 27.7369 29.4358 24.1234 26.7877 

4 No Brain 
Tumor images 

28.1245 32.1246 33.3209 23.8974 25.8974 28.2062 28.0245 25.3124 26.9530 

5 Non-cancerous 

images 

27.8975 32.3791 32.9611 24.5687 25.4589 27.6548 27.8975 24.5698 26.4417 

6 Cancerous 

images 

28.7864 31.6754 32.6845 24.6573 26.1478 27.3342 28.7864 25.1234 26.0886 

Average PSNR 28.7848 32.1498 32.9763 24.2075 26.1703 27.7014 28.6014 24.8548 26.5339 

 

 

Table 3 shows the PSNR based comparison of different compressive sampling algorithms under 

different sizes of measurement matrices like 155x256, 180x256, and 210x256. As well, the average values of 

PSNR for FFTCoSaMP are 27.7014 dB, 26.1703 dB, and 24.2075 dB for different measurement matrices like 

210x256, 180x256, and 155x256 respectively. Similarly average values of SSIM for the same differnet 

measurement marices is tabulated and compared in Table 4. Likewise, average values of RMSE for the same 

different set of measurement matrices are tabulated and compared in Table 5. 

 

 

Table 4. SSIM based comparison of different compressive sampling algorithms under different dimensions of 

measurement matrices 

 
CS 

Algorithms 
 DWTCoSaMP DCTCoSaMP FFTCoSaMP 

 S. N. 

Measurement 

matrix 
MRI images 

155 x 

256 

180 x 

256 

210 x 

256 

155 x 

256 

180 x 

256 

210 x 

256 

155 x 

256 

180 x 

256 

210 x 

256 

S 
S 

I 

M 

1 Glioma Tumor 

Images 

0.5645 0.5332 0.5938 0.4674 0.4744 0.4644 0.4650 0.5144 0.7021 

2 Brain Tumor 

Images 

0.4919 0.7424 0.8423 0.4824 0.3914 0.4914 0.4754 0.5914 0.8534 

3 Brain Tumorless 
Images 

0.4268 0.5453 0.5759 0.5251 0.5251 0.4251 0.5721 0.4251 0.4284 

4 No Brain Tumor 

Images 

0.4611 0.5861 0.5891 0.4411 0.3911 0.4311 0.5411 0.5311 0.7264 

5 Non-Cancerous 

Images 

0.4412 0.4855 0.5855 0.4342 0.4121 0.4412 0.4412 0.4412 0.8575 

6 Cancerous 
Images 

0.4915 0.7940 0.8040 0.5115 0.4115 0.4915 0.4250 0.4915 0.4940 

Average SSIM 0.4795 0.6144 0.6651 0.4769 0.4343 0.4574 0.4866 0.4991 0.6770 

 

 

4. DISCUSSION 

About 2000 MRI images like Glioma Tumor images, Dian Tumor images, Tumor-Less images, Cancerous 

images and Non Cancerous images are used for experimentation. For all these images, average PSNR values for 

DWTCoSaMP, DCTCoSaMP, FFTCoSaMP are 32.9763, and 27.7014, 26.5339 respectively for the measurement 

matrix of 210x256. Similarly, SSIM values for DWTCoSaMP, DCTCoSaMP, FFTCoSaMP are 0.6651, 0.4574, and 

0.6770 respectively for measurement matrix 210x256. Lastly, RMSE values for DWTCoSaMP, DCTCoSaMP, and 
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FFTCoSaMP is 0.0017, 0.0034, and 0.0379 respectively for measurement matrix 210x256. In all data analysis made 

in different measurement matrices of 155x256, 180x256, and 210x255, CS technique DWTCoSaMP is the best 

compered to DCTCoSaMP and FFTCoSaMP and other CS techniques. 

Figure 4 shows the bar chart for the various PSNR values of Table 3. Figure 5 shows the bar chart for the 

various SSIM values of Table 4. Figure 6 shows the bar chart for the various RMSE values of Table 5. The charts 

show that for all different measurement matrices, the DWTCoSaMP provides a best result when compared to other 

CS techniques of the letrature survey as refered in various references. If the SSIM value is appearing towards 1(one) 

or higher the PSNR values towards 100 dB or lower the RMSE values towards 0 (zero), there is a very good and 

better improvement in the reconstruction of MRI with respect to sparsity and incomplete signal. 

 

 

 
 

Figure 4. PSNR based bar chart for the analysis of FFTCoSaMP, DCTCoSaMP, and DWTCoSaMP 

 

 

 
 

Figure 5. SSIM based bar chart for the analysis of FFTCoSaMP, DCTCoSaMP, and DWTCoSaMP 
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Figure 6. RMSE based bar chart for the analysis of FFTCoSaMP, DCTCoSaMP and DWTCoSaMP 

 

 

Table 5. RMSE based comparison of different compressive sampling algorithms under different dimensions 

of measurement matrices 

 
CS 

Algorithms 
 DWTCoSaMP DCTCoSaMP FFTCoSaMP 

 S. N. 

Measurement 

matrix 

MRI images 

155 x 
256 

180 x 
256 

210 x 
256 

155 x 
256 

180 x 
256 

210 x 
256 

155 x 
256 

180 x 
256 

210 x 
256 

R

M
S

E 

1 Glioma Tumor 
images 

0.0329 0.0403 0.0006 0.0021 0.0036 0.0019 0.2004 0.1238 0.0016 

2 Brain Tumor 

images 

0.0330 0.0223 0.0006 0.0224 0.0009 0.0021 0.1928 0.1237 0.2190 

3 Brain 

Tumorless 

images 

0.0332 0.0021 0.0006 0.0192 0.0029 0.0019 0.1271 0.0049 0.0016 

4 No Brain 

Tumor images 

0.0330 0.0013 0.0069 0.0539 0.0011 0.0053 0.1245 0.0004 0.0015 

5 Non-
Cancerous 

images 

0.0430 0.0005 0.0006 0.0210 0.0407 0.0068 0.0298 0.0005 0.0017 

6 Cancerous 

images 

0.0236 0.0011 0.0006 0.0234 0.0005 0.0021 0.1314 0.0011 0.0018 

Average RMSE 0.0331 0.0113 0.0017 0.0237 0.0083 0.0034 0.134 0.0424 0.0379 

 

 

5. CONCLUSION 

In this research work for exploitation of sparsity under different compressed sensing techniques, 

DWTCoSaMP reveals the best method when compared to DCTCoSaMP and FFTCoSaMP and other traditional 

methods. By varying the dimensionalities of measurement matrices, DWTCoSaMP gives best results when 

compared to DCTCoSaMP, FFTCoSaMP, and other traditional CS techniques. For my future study, we would 

like to work on audio and speech signal type of data. So, we would like to work on these datasets.  
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