
BY:

DILEEP J

SUBJECT CODE: 18EC62

ASST. PROF., DEPT. OF ECE, KSSEM

EMBEDDED SYSTEMS

MODULE-2:

Assembly Basics

 Assembler Language: Basic Syntax

 Label opcode operand1, operand2, ... ; Comments

 The label is optional. Some of the instructions might have a label in

front of them so that the address of the instructions can be

determined using the label.

 Then, you will find the op-code (the instruction) followed by a

number of operands. Normally, the first operand is the destination of

the operation.

 For example, immediate data are usually in the form #number, as

shown

 MOV R0, #0Xff ; Set R0 = 0xFF (hexadecimal)

 MOV R1, #'S' ; Set R1 = ASCII character S

 The text after each semicolon (;) is a comment. These comments do

not affect the program operation,

 but they can make programs easier for humans to understand.

 You can define constants using EQU, and then use them inside your

program code. For example,

NVIC_IRQ0_ENABLE EQU 0x1

……….

MOV R1,#NVIC_IRQ0_ENABLE ; Move immediate data to register

STR R1,[R0] ; Enable IRQ 0 by writing R1 to address in R0

 For the Cortex-M3, the conditional execution suffixes are usually
used for branch instructions.

 Unified Assembler Language: UAL was developed to allow
selection of 16-bit and 32-bit instructions and to make it easier to
port applications between ARM code and Thumb code by using the
same syntax for both.

 ADD R0, R1 ; R0 = R0 + R1, usingTraditionalThumb syntax

 ADD R0, R0, R1 ; Equivalent instruction using UAL syntax

 Assembler Language: Moving Data

 Syntax: MOV DEST , SRC

 One of the most basic functions in a processor is transfer of data. In
the Cortex-M3, data transfers can be of one of the following types:

• Moving data between register and register

• Moving data between memory and register

• Moving data between special register and register

• Moving an immediate data value into a register

 The command to move data between registers is MOV (move). For
example, moving data from register R3 to register R8 looks like
this:

MOV R8, R3

 Another instruction can generate the negative value of the original
data; it is called MVN (move negative).

 Ex: MVN R0, R1; copies inverted version R1 data to R0

 The basic instructions for accessing memory are Load and

Store.

 Load (LDR) : transfers data from memory to

registers, and Store transfers data from registers to

memory.

 The exclamation mark (!) in the instruction specifies whether

the register Rd should be updated after the instruction is completed.

 For example, if R8 equals 0x8000:

1. STMIA.W R8!, {R0-R3} ; R8 changed to 0x8010 after

store; (increment by 4 words)

2. STMIA.W R8 , {R0-R3} ; R8 unchanged after store ; w

means “wide”

 Ex 1: Address 0x8000: 8-Bit Data

 0x8001: 8-Bit Data

 0x8002: 8-Bit Data

 0x8003: 8-Bit Data ; till here R0= 32-bit data storage is done

 0x8004: 8-Bit Data

 0x8005: 8-Bit Data

 0x8006: 8-Bit Data

 0x8007: 8-Bit Data; till here R1 = 32 bit data storage is done

 0x8008: 8-Bit Data

 0x8009: 8-Bit Data

 0x800A: 8-Bit Data

 0x800B: 8-Bit Data; till here R2 = 32 bit data storage is done

 0x800C: 8-Bit Data

 0x800D: 8-Bit Data

 0x800E: 8-Bit Data

R8 changed to 0x8010 after store; (increment by 4 words)

0x800F: 8-Bit Data; till here R3 = 32 bit data storage is done

 ARM processors also support memory accesses with pre-

indexing and post-indexing. For pre-indexing, the register

holding the memory address is adjusted. The memory transfer

then takes place with the updated address. For example,

 LDR.W R0,[R1, #offset]! ; Read memory [R1+offset],

with R1 and update to R1+offset

 Offset can be 16 bit data or 32 bit data

 R1 contents will be added to 16 or 32 bit data. This forms the

memory address. Content which is present in that address will

be copied to R0 register.

 Exclamatory mark indicates the update of R1 register

 Ex: before execution: R1=0x1000 offset=0x0050

 After execution: R1=0x1050

B=Byte (8-bit), H=half word (16-bits), W= Word

(32-bits), D= Double Word (64-bits)

 Two other types of memory operation are stack PUSH and stack POP.

For example,

 PUSH {R0, R4-R7, R9} ; Push R0, R4, R5, R6, R7, R9 into stack

memory

 POP {R2,R3} ; Pop R2 and R3 from stack

 Usually a PUSH instruction will have a corresponding POP with the

same register list, but this is not always necessary. For example, a

common exception is when POP is used as a function return:

 PUSH {R0-R3, LR} ; Save register contents at beginning of

; subroutine Processing

 POP {R0-R3, PC} ; restore registers and return

 In this case, instead of popping the LR register back and then

branching to the address in LR, we POP the address value directly in

the program counter.

 Assembler Language: Processing Data

 The Cortex-M3 provides many different instructions for data

processing. A few basic ones are Introduced here. Many data

operation instructions can have multiple instruction formats. For

example, an ADD instruction can operate between two registers or

between one register and an immediate data value:

 ADD R0, R0, R1 ; R0 = R0 + R1

 ADDS R0, R0, #0x12 ; R0 = R0 + 0x12 and update APSR

 ADD.W R0, R1, R2 ; R0 = R1 + R2

 ADD.W R0, R1, R2 ; Flag unchanged

 ADDS.W R0, R1, R2 ; Flag change

 Assembler Language: Call and Unconditional Branch

 B label ; Branch to a labeled address

 BX reg ; Branch to an address specified by a register

 In BX instructions, the LSB of the value contained in the register

determines the next state (Thumb/ARM) of the processor.

 In the Cortex-M3, because it is always in Thumb state, this bit

should be set to 1.

 If it is zero, the program will cause a usage fault exception because

it is trying to switch the processor into ARM state (See Figure

4.2.).

 To call a function, the branch and link instructions should be used.

 BL label ; Branch to a labeled address and save return address in

;LR

 POP {R15} ; Do a stack pop operation, and change the

; program counter value to the result value.

 When using these methods to carry out branches, you also need to

make sure that the LSB of the new program counter value is 0x1.

 Otherwise, a usage fault exception will be generated because it

will try to switch the processor to ARM mode, which is not

allowed in the Cortex-M3 redundancy.

 Assembler Language: Conditional Execution Using IT

Instructions

 The IT (IF-THEN) block is very useful for handling small

conditional code. It avoids branch penalties

 because there is no change to program flow. It can provide a

maximum of four conditionally executed instructions.

 In IT instruction blocks, the first line must be the IT instruction,

detailing the choice of execution, followed by the condition it

checks.

 TRUE-THEN-EXECUTE,

 which is always written as IT xyz, where T means THEN and E means

 ELSE. The second through fourth statements can be either THEN
(true) or ELSE (false):

IT<x><y><z> <cond> ; IT instruction (<x>, <y>,

; <z> can be T or E)

instr1<cond> <operands> ; 1st instruction (<cond>

; must be same as IT)

instr2<cond or not cond> <operands> ; 2nd instruction (can be

; <cond> or <!cond>

instr3<cond or not cond> <operands> ; 3rd instruction (can be

; <cond> or <!cond>

instr4<cond or not cond> <operands> ; 4th instruction (can be

; <cond> or <!cond>

 You can have fewer than four conditionally executed instructions.

The minimum is 1. You need to make sure the number of T and E

occurrences in the IT instruction matches the number of conditionally

executed instructions after the IT.

 If an exception occurs during the IT instruction block, the

execution status of the block will be stored in the stacked PSR (in

the IT/Interrupt-Continuable Instruction [ICI] bit field).

 So, when the exception handler completes and the IT block

resumes, the rest of the instructions in the block can continue the

execution correctly.

 In the case of using multicycle instructions (for example, multiple

load and store) inside an IT block, if an exception takes place

during the execution, the whole instruction is abandoned and

restarted after the interrupt process is completed.

4.3.7 Assembler Language: Instruction Barrier and Memory

Barrier Instructions

 The Cortex-M3 supports a number of barrier instructions.

 These instructions are needed as memory systems get more and

more complex.

 In some cases, if memory barrier instructions are not used, race

conditions could occur.

 The syntax for signed and unsigned divide instructions is as

follows:

SDIV.W <Rd>, <Rn>, <Rm>

UDIV.W <Rd>, <Rn>, <Rm>

 The result is Rd = Rn/Rm. For example,

LDR R0,=300 ; Decimal 300

MOV R1,#5

UDIV.W R2, R0, R1

SDIV and UDIV

This will give you an R2 result of 60 (0x3C).

https://os.mbed.com/media/uploads/4180_1/cortexm3_instructions.htm

https://www.youtube.com/watch?v=topbkiRevWM

Web Links:

