

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICAL INTELLIGENCE AND DATA SCIENCES SESSION: 2022-2023 (ODD SEMESTER)

FIRST ASSIGNMENT

Degree Branch

: B.E : Al&DS

Course Title : Analog and Digital Electronics
Date : 29/11/2022

Semester : III
Course Code : 21CS33
Max Marks : 10
Last Date for : /12/2022

submission

Q No.	Question	Marks	K- Level	CO mapping
1	Identify all the prime implicants and essential prime implicants for the following Boolean function and obtain minimum sum of product using K-map $F(a,b,c,d)=\sum m(1,2,3,5,6,7,11,12,13,14,15)$	1	Applying K3	COI
2	Find the minimal sum of product and product of sum for the following Boolean function using K-map $F(a,b,c,d) = \sum m(6,7,9,10,13) + d(1,4,5,11)$	1	Applying K3	CO1
3	Solve the following Boolean function by using a Quine-McClusky method $F(a,b,c,d) = \sum m(0,2,3,6,7,8,10,12,13) \\ F(a,b,c,d) = \sum m(1,2,3,5,9,12,14,15) + d(4,8,11)$	1	Applying K3	COI
4	A digital system is to be designed in which months of the year is given as input in four-bit form. The month January is represented as '0000', February as '0001 and so on. The output of the system should be '1' corresponding to the input of the month containing 31 days or otherwise it is '0'. Consider the excess number in the input beyond '1011' as don't care conditions for the system of four variables (A, B,C,D) find the following i. Write the Boolean expression in Σm and πN form. ii. Write the truth table. iii. Using K-Map, simplify expressions of canonical minterm form. Implement the simplified equation using NAND-NAND gates.	i i	Applying K3	COI

6	What are the advantages of Map-Entered Variable method? Using MEV method solve following function: $F(A, B, C, D) = m_0 + m_2 + m_3 + Em_5 + Em_7 + Fm_9 + m_{11} + m_{15} + d(1,13,14)$ $F(A, B, C, D) = \sum_{m=1}^{\infty} m(1,3,13,15) + d(8,9,10,11)$	1	Applying K3	COI
7	Find the minimum SOP and POS for each function using a karnaugh map and give the circuit diagram $f(A, B, C, D) = \Sigma m (0,1,2,4,5,12,14) + d (8,10)$. $f(A, B, C, D) = \Pi M (0,2,3,8,9,12,13,15)$	1	Applying K3	COI
8	Define static 1 hazard. Explain how static-1 hazard can be detected and removed with an example.	1	Applying K3	CO2
9	Define static 0 hazard. Detect and eliminate static 0 hazard in the function the $f(A, B, C) = \Pi M(0,1,3,4)$	1	Applying K3	CO2
0	Explain Petrik's method with an example	1	Applying K3	COI

Course Incharge

HOD AI & DS

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICAL INTELLIGENCE AND DATA SCIENCES SESSION: 2022-2023 (ODD SEMESTER)

SECOND ASSIGNMENT

Degree

B.E

Branch

Al&DS

Course Title

Analog and Digital Electronics

Date

/1/2023

Semester

: 111

Course Code: 21CS33

Max Marks : 10 Last Date for

: /12/2022

submission

Q No.	Question	Marks	K- Level	CO mapping
1	What is multiplexer? Implement the given Boolean functions by using 8:1 multiplier. i) $F(a,b,c,d) = \sum m(0,1,3,5,7,11,12,13,14)$ ii) $F(a,b,c,d) = \sum m(0,1,5,6,8,10,12,15)$ iii) $F(a,b,c,d) = \pi M(1,2,5,6,9,12)$	1	Applying K3	CO2
2	Explain the working principal of 3:8 decoder. Implement the given Boolean function using 3:8 decoder and external gates. F1(a,b,c))= $\sum m(0,4,6)$, F2(a,b,c)= $\sum m(0,5)$ F3(a,b,c)= $\sum m(1,2,3,7)$	1	Applying K3	CO2
3	a)Implement the following multi-Boolean function using $3\times4\times2$ PLA $F1(a,b,c) = \sum m(1,2,4,6), F2(a,b,c) = \sum m(0,1,6,7)$ $F3(a,b,c) = \sum m(2,6)$ b)Implement the following multi-Boolean function using appropriate PLA $F1(a,b,c) = \sum m(0,4,7), F2(a,b,c) = \sum m(4,6)$	1	Applying K3	CO2
4	a) Design full adder using PAL. b)Implement the following Boolean function using appropriate PAL $A(x,y,z) = \sum m(1,2,4,6)$, $B(x,y,z) = \sum m(0,1,6,7)$ $C(x,y,z) = \sum m(2,6)$	1	Applying K3	CO2
5	Discuss three state buffers and its types.	1	Understanding K2	CO2

6	Explain the structure of VHDL program and implement full adder using VHDL code	1	Applying K3	CO3
7	a)Differentiate between latches and flip-flop b) Explain Master/Slave JK flip-flop using NAND gate with suitable timing diagram.	1	Understanding	C03
8	Derive the characteristics equation and excitation table for the following flip-flops a)SR flip-flop b)JK flip-flop c) D flip-flop d) T flip-flop	1	K2 Applying K3	CO3
9	Explain JK Inp-flop and T flip-flop with timing diagram	1	Understanding K2	CO3
0	Explain the working of SR gate latch and D gate latch using NAND gates and derive the characteristics equation for the same.	1	Applying K3	CO3

HOD

HOD

Dept. of Artificial Intelligence & Data Science K.S. School of Engineering & Management Bangalore - 560 109.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICAL INTELLIGENCE AND DATA SCIENCES SESSION: 2022-2023 (EVEN SEMESTER)

FIRST ASSIGNMENT

Degree Branch B.E

Al&DS

Course Title Date

Microcontroller & Embedded systems

/06/2023

Semester : IV

Course Code: 21CS43

1)

Max Marks : 10

: /06/2023 Last Date for

submission

Q No.		Question	Marks	K- Level	CO mapping
1	Differenti) ii) iii)	RISC and CISC. Microprocessor and Microcontroller Von-Neuman architecture and Harvard architecture	1	Understanding K2	COI
2	i) ii) iii) iv)	Explain ARM core data flow model with neat diagram Explain architecture of a typical embedded device based on ARM, with neat diagram. Explain pipelining with a neat diagram Explain different processor modes provided by ARM.	1	Understanding K2	CO1
3	Explain A	ARM registers used under various modes	1	Understanding K2	COI
4	Explain t	he various fields in the current program status	1	Understanding K2	CO1
5	1.1.	RM core extension with a neat diagram nd tightly coupled memory	1	Understanding K2	COI
6		escribe the concepts of exceptions, interrupts, ector table	1	Understanding K2	COI
7	i) · ii)	Write an ALP using ARM instructions to find the factorial of a given number. Write an ALP using ARM instructions to find sum of 1st 10 integer numbers	1	Understanding K2	CO2

8	With an example, explain the following ARM instructions i)MOV ii)MVN iii)ADC iv)RSC v)BIC vi)SBC vii) EOR viii)RSB	1	Understanding K2	CO2
9	What are the various logical instructions supported by ARM? Explain with examples for each.	1	Understanding K2	CO2
10	With a neat diagram explain barrel shifter.	1	Understanding K2	CO2

Course Incharge

HOD

Dept. of Artificial Intelligence & Data Science K.S. School of Engineering & Management Bangalore - 560 109.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICAL INTELLIGENCE AND DATA SCIENCES SESSION: 2022-2023 (EVEN SEMESTER)

SECOND ASSIGNMENT

Degree Branch B.E

AI&DS

Microcontroller & Embedded systems

Course Title Date

/08/2023

Semester : III

Course Code: 21CS43 Max Marks : 10

: /08/2023

Last Date for submission

Q No.	Question	Marks	K- Level	CO mapping
1	Briefly explain the different load-store instruction categories used in ARM.	1	Understanding K2	CO2
2	Explain Co-processor instructions in ARM.	1	Understanding K2	CO2
3	Discuss load and store instructions with respect to i) Single register transfer	1	Understanding K2	CO2
4	ii) Multiple register Explain i) Branch instructions in ARM. ii) Multiply instructions	1	Understanding K2	
5	 iii) Load constants i) Write a note on instruction scheduling. ii) Summarize scheduling of load instructions. 	1	Understanding K2	CO2
6	Write a C program that prints squares of the integers between 0 to 9 using function and explain how to convert C function to assembly function.	1	Understanding K2	C03
7	Write a note on profiling and cycle counting	1	Understanding K2	CO3
8	With a short note on i) Register allocation	1	Understanding K2	C03
9	ii) Aliocation variables to register numbersWrite an ALP to count the number of ones and zeros in two consecutive memory locations.	1	Understanding K2	СО3

10	 i) Write an ALP using ARM instructions to find the largest/smallest number in an array with 32 bit data. ii) Write an ALP using ARM instructions to arrange the number in ascending/descending order. 	1	Understanding K2	CO2
11	Explain the following instructions with syntax and example i) SWI ii)SWP iii)MSR iii)MRS	1	Understanding K2	CO2
12	Explain the most efficient way to write a for loop on the ARM with checksum example. (Consider the fixed number of iterations)		Understanding K2	CO3
13	Explain loop unrolling with an example.		Understanding K2	CO3

Course Incharge

HOD

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICIAL INTELIGENCE & DATA SCINCE

SESSION: 2022-2023 (EVEN SEMESTER)

FIRST ASSIGNMENT

Degree

B.E

Branch Course Title

AIKOS Operating Systems

Date

13/06/2023

: 17

Course Code : 21CS44

Max Marks : 10

Last Date

: 20/06/2023

for submission

Q No.	Questions	Marks	K- Level	CO
1	a. Explain computer system operations with diagram.b. Explain operating system operations with diagram.	1	Understanding K2	COI
2	a. Define an operating system. Illustrate with neat diagram.b. Explain briefly about types of system calls.	1	Understanding K2	COI
3	 a. Define a process illustrate with a neat diagram the different states of a process and process control block. b. List and explain the services provided by the OS for the user and efficient operation of system. 	1 1 1 2 1	Understanding K2	COI
4	a. Explain Multiprogramming and Time-sharing systems b. Explain 1) Single processor systems 2) Multiprocessor systems 2) Observed systems	1	Understanding K2	COL
5	 a. Explain Microkernel and Module structure of operating system. b. Explain the concept of virtual machines with neat diagram. Bring out its advantages. 	ı	Understanding K2	CO1
6.	a. Compare client – server computing and peer-to-peer computing. b. Demonstrate the operation of process creation and process termination in UNIX.	l	Understanding K2	COI
7	 a. Explain layered approach structure of operating system. b. Describe the implementation of IPC using shared memory and message passing. 	1	Understanding K2	COI
8	 a. Explain different types of multi-threading models. b. Explain preemptive and non-preemptive scheduling. 	1	Understanding K2	CO3

	P	rocess ID	Arrival Time	E	Burst Time			
	P	21	0	2	2			
	F	22	3	(6			
	 	P3	4				Applying	602
9	1	D.4	5		4	1	К3	CO2
		wild the Centt	chart and calculate	average wai	iting time and turnaroun	d		9
	t	ime for the fol	lowing snapshot of	the process	using FCFS and Roun	d		
	. 1	Robin.						
	1	~	Court about and c	alculate av	erage waiting time an	d		
	1	a. Build the	Janti Charl and C	enanchot of	the process using SRT	F		
		turnaround time	e for the following	Shapshot of	the process dame			
		and Priority sch	eduling algorithms.	i .				
		Process ID	Arrival Time	Burst Tim	ne			
		P1	0	2				
		P2	3	6				
		P3	4	1				
		P4	5	4			Applying	-
						1	K3	CO2
	10	-		of an of	Programtive SIF and no	n-		
		b. Build Gan	tt chart to show e	xecution of	Preemptive SJF and no	ge		
				average w	vaiting time and average			
		turnaround tir	ne.					
		D I I I D	Arrival Time		Burst Time			
		Process ID	0		10			
		PI	2		6			
		P2	3		3			
		P3	3		4			

Course In charge

HOD

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109 DEPARTMENT OF ARTIFICIAL INTELIGENCE & DATA SCIENCE

SESSION: 2022-2023 (EVEN SEMESTER)

SECOND ASSIGNMENT

Degree

B.E

Branch

AI&DS

Course Title

: **Operating Systems**

Date

21/07/2023

Semester

: IV

Course Code: 21CS44

Max Marks : 10

Last Date : 31/07/2023

for submission

Q No.	Questions	Marks	K Level	CO Mapping
1.	 a) Explain critical section and requirements that critical section problem must satisfy. b) Define Semaphores. Explain two primitive Semaphore operations. Discuss its advantages and disadvantages. 	1	Understanding K2	CO2
2.	a) Illustrate Peterson's solution for critical section problem. b)Explain solution to Bounded-Buffer Problem using Semaphores.	1	Understanding K2	CO2
3.	Define Semaphores. Explain Reader-Writer problem with semaphore in detail.	1 .	Understanding K2	CO2
4.	Define Monitors. Explain Dining-Philosophers solution using Monitors.	1	Understanding K2	CO2
5.	 a) Define deadlock? Explain the necessary conditions for deadlock occurrence. b) Draw and Explain the Resource-Allocation Graph i) With deadlock ii) With a cycle but no deadlock 	1	Understanding K2	CO3
6.	Find the safe sequence for the following snapshot by using Banker's algorithm. Process Allocation Max Available A B C A B C A B C A B C P0 0 0 2 0 0 4 1 0 2 P1 1 0 0 2 0 1 P2 1 3 5 1 3 7 P3 6 3 2 8 4 2 P4 1 4 3 1 5 7 i) Is the system is in safe state? ii) If a request from process P2 arrives for (0,0,2) can the request be granted?	2	Applying K3	CO3

	Explain de										2	Understanding K2	CO3
1	Determine using												
	Process	Alle	ocatic	n		Max		Avai	lable	;			
		Α	В	C	A	В	C	Α	В	C			
	PO	0	1	0	7	5	3	3	3	2			
	PI	2	0	0	3	2	2				2	Applying	CO3
	P2	3	0	2	9	0	2				2	K3	003
	P3	2	$\frac{1}{0}$	$\frac{1}{0}$	2	3	3						
	P4	94											
	Banker's	Banker's algorithm.											
	If a requ	. C T	11 0 000	vas foi	.(102) can	the re	auest	be gr	anted			
	If a required immedi	est for t ately?	'i aiii	VES 104	(1,0,2), c a		4	6-				
_	Illineur	ne Trans	clation	Load	aside I	Buffer	(TLE	3). Ex	plair	TLB		YY 1 101 - 12	
0	a) Den	ne Trans il with a	siatioi simnl	e pagi	ng syste	em wi	th a n	eat di	agrar	n.	2	Understanding K2	CO3
9	in deta	olain seg	menta	tion w	ith exa	mple.						112	
				e 25									
	a) Dis	cuss bo	th exte	ernal a	nd inte	rnal fr	agme	ntatio	n pro	blems			
	encou	ntered in	n a coi	ntiguo	is mem	ory al	locati	on scr	ieme		2	Understanding	CO3
	10.					4-1-		h maar	and !	10	2	K2	
		xplain			of pag	ge tab	ie wit	n rest	Ject	10			
	hiera	rchical p	oaging	•									

Course In charge

HOD