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Abstract: Acute lymphoblastic leukaemia (ALL) detection through a complete 
blood count test is often flagged to an expert pathologist for confirmation 
which is time-consuming, observer-specific and involves intensive labour. The 
study proposes an efficient computer aided diagnosis (CAD) method based on 
image processing and machine learning models to assist doctors in analysing 
microscopic images. This study aimed to investigate the combined 
discriminative qualities of shape and texture features, as well as the best fit 
feature subset selection technique, to achieve high accuracy and a low false 
positive rate for classification of healthy and ALL infected leukocyte cell 
images. This approach outperformed existing models with an accuracy of 
92.3%, a precision of 96%, and a false positive rate of 3.846%. As a result, the 
proposed methodology is capable of more precisely classifying the images into 
healthy and ALL affected cell images, assisting physicians in the detection and 
diagnosis processes. 
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1 Introduction 

Advancements in artificial intelligence (AI), data science, and computer vision have 
drastically improved the diagnosis accuracy and conventional perception of laboratory 
haematology process patterns and norms. Leukocyte image analysis has been the subject 
of much research over the past few decades. Leukocytes are responsible for building a 
strong immune system in the human body and fight against foreign invaders like viruses, 
bacteria, and fungi. Leukaemia is caused by the abnormal and uncontrolled growth of 
lymphocytic cells (Pan et al., 2012), with chronic lymphoblastic leukaemia (CLL) and 
acute lymphoblastic leukaemia (ALL) being the most common types. Lymphocytes are 
usually found in lymph nodes, the spleen, the thymus, the bone marrow and spread across 
the respiratory and digestive systems. They develop from lymphoblast cells into mature 
infection-fighting cells called lymphocytes: B cells and T cells. These early immature 
cells develop into ALL at various stages, and are most seen in 3–7 age group children, 
causing low survival rate if left untreated at the earliest. 6,000 new cases are diagnosed 
every year with symptoms like weakness, bone pain, fever, frequent infections, excessive 
sweating, sudden unexpected weight loss, etc. According to the American Cancer Society 
(2019), bone marrow aspiration and biopsy, blood tests, lumber puncture, lymph node 
biopsy, chromosome tests, flow cytometry, immunohistochemistry, cytogenetics, and 
imaging tests (X-ray, CT scan, MRI, ultrasound, etc.) should be used to diagnose 
leukaemia. Biopsy (Loeffen et al., 2020) is conducted to determine the definitive type of 
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cancer and its stage. A tiny hollow needle is inserted through the skin, and a sample of 
tissue or tumour is extracted and sent to a laboratory for analysis. This test, when 
conducted on children, leads to discomfort and certain complications like bleeding, 
injury, or infection. As a result, it should be avoided in children to the extent possible. 

A complete blood count test, being the most economical and simple of all other tests, 
is often suggested by doctors to detect leukaemia. Pathologists use careful microscopic 
observation of blood smears to determine the number and type of leukocytes based on 
their usual colour, shape, size, and texture. The accuracy of this manual technique is low 
and partially dependent on the experience level of pathologists (Acharjee et al., 2016; 
Rajinikanth et al., 2020). Furthermore, pathologists who are tired may miss vital evidence 
while examining and take a long time to reveal the reports (Bhattacherjee et al., 2020). 
Leukocytes can also be divided into healthy and sick cells, or into the sorts of cells that 
make up each type, using a variety of automated methods employing laser, radio 
frequency, direct current, the impedance method, optimal temperatures, volumes, as well 
as various blood smear slide staining procedures. These tools offer a high degree of 
precision and accuracy in calculating and recognising normal blood cells. However, they 
lack the sensitivity needed to recognise premature, irregular, or blast cells. To solve this 
issue, analysers frequently flag samples based on their cell population, that demands 
trained personnel to perform peripheral smear tests to spot abnormal cells. This resulted 
in the use of computer vision and image processing techniques to detect and classify 
leukocytes in peripheral microscopic blood smear images. Leukocyte image analysis has 
received a great deal of attention in recent decades. Several computerised models for 
classifying leukocytes into healthy and diseased cells or constituent types have been 
created. Computer algorithms based on image processing (IP) and machine learning (ML) 
models promise to reduce laboratory workload and personnel costs while simultaneously 
improving patient care. Even if they have been shown to be more effective in the current 
situation, the automatic haematology analysers that are now in use have several issues 
that need to be properly addressed considering image quality, image acquisition 
standards, illumination settings, cell density, presence of overlapping cells, the effect of 
staining artefacts, similarity between class samples, imbalance, and inadequate datasets. 

The CAD tools based on neural networks (NN) and deep learning (DL) models 
(Khadse et al., 2020; Renuka and Surekha, 2021) could be an alternative, and many 
researchers have been working for decades to build models capable of classifying blood 
cells as malignant (unhealthy or abnormal) or benign (healthy or normal) (Gedik, 2022) 
using these algorithms. Rodrigues et al. (2016) proposed a simple technique to automate 
the classification of lymphocytes into normal and abnormal in blood smear images, using 
morphological operators (Vincent and Chandra, 2022) to preprocess ALLIDB images. 
Decision trees, naïve Bayes, SVM (Kshirsagar et al., 2021; Kalaiselvi et al., 2022) and  
K-nearest neighbour (KNN) classifiers, along with cross validation, were implemented 
for comparison and reported an accuracy of 85%. An ant colony optimisation-based 
hybrid feature selection with cosine similarity and SVM classifier was proposed 
(Sweetlin et al., 2017). The run-based recruitment strategy was applied to select the best 
features. This study extracted 22 grey level co-occurrence matrix (GLCM) features and 
18 geometric features with an accuracy of 81.66%. An elephant herd optimisation 
algorithm that minimises the misclassification rate as an objective function is proposed 
(Sahlol et al., 2017). A feed forward neural network (NN) was used to classify the 
ALLIDB images, which resulted in 91.8% accuracy. Mishra et al. (2017) proposed a 
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technique based on the discrete cosine transform (DCT) for feature extraction. The 
Wiener filter was used to preprocess the ALLIDB images, and SVM was used as a 
classifier (Li et al., 2018). Ninety features were extracted using DCT, and 89.76% 
accuracy was reported. Shree and Kumar (2018) also proposed a similar approach for 
classification using the GLCM model’s extracted features and an NN classifier. 

Moshavash et al. (2018) presented a robust decision support system for the 
classification of healthy and malignant leukocytes with ensemble classifiers. The 
ensemble classifier is comprised of supervised models like SVM, KNN, naïve Bayes, and 
decision tree. The class labels from these models were approximated using weights, and 
majority vote labels were taken as the final decision. Similar approaches were carried out 
with variants of SVM kernel functions like multi-layer perceptron (MLP), Gaussian 
radial basis function, polynomial, quadratic, and linear. To classify ALL cells, a feature 
extraction method based on a grey-level run length matrix was presented (Mishra et al., 
2018) in which 11 features were extracted and fed to the SVM classifier. De Faria et al. 
(2018) proposed an approach based on local descriptors like SURF and SIFT to extract 
features, and a bag of visual words (BOVW) was used to represent them. SVM and MLP 
supervised classifiers were used on three different datasets. Histopathology image 
classification using local descriptors was proposed by Öztürk and Akdemir (2018), where 
many supervised classifiers like boosted trees, KNN, and SVM are compared for 
performance. Among many feature extraction methods like GLCM, local binary pattern 
(LBP), and grey level run length matrix, the segmentation-based fractal texture analysis 
method picked up more prominent features than any other descriptor. Ahmed et al. 
(2019) presented a convolutional neural network (CNN)-based classification (Ahuja  
et al., 2019), which is computationally complex but incorporates feature extraction within 
itself. The approach was used to classify leukaemia subtypes from microscopic images. 
Five-fold cross validation with SGD and ADAM optimisers was used to tune the 
classifier model for 100 epochs. This model resulted in 88.25% accuracy. A  
multi-features-based segmentation and classification approach of leukocyte types was 
proposed (Benomar et al., 2021) where 155 leukocyte cells were segmented from 87 
colour images using the watershed algorithm. Various morphological, colour, and texture 
features were extracted from both segmented nucleus and cytoplasm images. Overall 
accuracy of 95.86% was reported in classifying five types of leukocytes using a random 
forest classifier. 

In the existing methods, raw images are processed directly. Some literature reports 
few methods of preprocessing but does not validate them with any metric to define 
quality improvement. No information is reported on false positive and false negative 
rates, which are crucial metrics to detect and diagnose any disease. Also, different 
datasets are used, some of which are benchmark datasets while others are handcrafted 
datasets that are hard to obtain. Some techniques were experimented on with their own 
private datasets and cannot be validated due to their non-availability to the research 
community. Further, images are subjected to a variety of clinical conditions, including 
image acquisition via various scanners, staining modalities, non-uniform illumination 
conditions, and microscopic magnification. Hence, irrespective of any application, 
images need custom adjustment of range and brightness values to correct image artefacts 
so that visual understanding and interpretation are possible. The difference between 
healthy and unhealthy cells can be recognised efficiently only when classifier models are 
fed with the most discriminative features. Hence, the challenge of developing a robust 
and highly differentiable feature extractor model remains unsolved. The removal of 
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redundant features is also a major task that can improve the training speed and 
complexity of a classifier model. Classifier model parameter optimisation must be carried 
out in a more systematic and controlled way. Further, the deployed model should be 
evaluated with relevant metrics to validate the system. The current classification models 
depend on the type of image dataset used, segmentation models, kinds of features 
extracted, and types of classifier models (Kshirsagar et al., 2018; Benomar et al., 2021). 
Hence, huge scope awaits many researchers to experiment and explore various techniques 
with a variety of combinations that can best suit multiple datasets. 

This study proposes a new approach to classify leukocytes in microscopic blood 
smear images into healthy and ALL infected unhealthy, using the freely available 
benchmark dataset ALL Image Database (ALLIDB) to achieve a low false positive rate. 

The highlights are as follows: 

• images are preprocessed using the contrast limited adaptive histogram equalisation 
(CLAHE) enhancement model and evaluated with a no reference image quality score 
NIQE 

• various texture feature extraction techniques, such as LBP, GLCM, HOG, and SURF 
are analysed 

• SFS and PCA feature selection models are applied and compared to select the best 
feature vectors 

• the optimised SVM classifier model is trained using selected features and tested 

• the classifier model is evaluated with standard metrics. 

2 Preliminaries 

2.1 Contrast limited adaptive histogram equalisation 

Histogram equalisation transforms all image pixels using a transformation derived from 
the histogram of the image. While this works well with uniformly distributed pixel 
intensities, it does not work well with variable pixel intensities. Adaptive histogram 
equalisation (AHE) addresses this issue by transforming every pixel with a function 
adapted by its neighbourhood region. The drawback of AHE is over amplification of the 
noise in near-constant regions. CLAHE is an improved variant of AHE that limits noise 
amplification (Tarandeep et al., 2017). CLAHE is basically characterised by two 
parameters: the number of tiles and the clip limit to control the contrast of the image (Fan 
et al., 2020). Tile is a two-element vector [M N] with N columns and M rows. The 
original image is divided into regions of contextual rectangles specified by tile. A 
contrast function is computed on each tile, thereby enhancing its contrast such that the 
histogram of each tile matches approximately the desired histogram shape, called the 
distribution value. The falsely induced boundaries are removed by combining 
neighbourhood tiles using bilinear interpolation. To avoid saturation in areas of uniform 
intensity, a contrast factor known as ‘clip limit’ is used. The clip limit ranges from 0 to 1, 
where a higher value leads to high contrast. 
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2.2 Local binary pattern 

Humans can identify objects based on colour, shape, and size (Maiti et al., 2021), 
whereas machines follow specific patterns and textures to discriminate among objects 
(Dabeer et al., 2019). The process of identifying and describing a unique, distinguishable 
set of characteristics in the form of a numerical vector is called feature extraction. LBP is 
a popular feature descriptor known for computational ease and promisingly good 
performance. LBP (Khalil et al., 2018; Alhindi et al., 2018) computes local texture 
representation of an image. The neighbouring pixel values are compared with a central 
point under consideration to check if value is greater or less than the central point. A 2D 
array equal to the input image size with entries as LBP values is constructed, and a 
histogram is computed over it. If 3×3 neighbourhoods are taken, then 256 patterns from 0 
to 255 will construct 256 bins of LBP codes. These feature bins for every image can be 
stored as an array in an excel sheet or CSV file for further classification. 

2.3 Grey level co-occurrence matrix 

The most popular texture-based feature extraction method is GLCM (Alhindi et al., 2018; 
Dwaich and Abdulbaqi, 2021), which is a matrix that represents the spatial relationship 
between pixels. It explores how often pixel pairs occur in an image with values of 
intensity and position. Several statistics are derived from this matrix, such as contrast, 
correlation, energy, and homogeneity. Equations (1) to (5) specify GLCM features. 

( )
1

2

, 0

M

xy
x y

Energy P
−

=

=   (1) 

1
2

, 0

( )
M

xy
x y

Contrast P i j
−

=

= −  (2) 

1

2
, 0

( )( )M

ij
ix y

x μ y μCorrelation P
σ

−

=

− −=   (3) 

1
2 2

, 0

( )
M

xy
x y

σ P i μ
−

=

= −  (4) 

1

2
, 0 1 ( )

M
xy

x y

P
Homogeneity

x y

−

=

=
+ −  (4) 

where 

Pxy GLCM element 

M total levels 

μ GLCM mean 

σ2 variance of intensities of all reference pixels that contributed to GLCM. 
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Contrast is a metric of variance and inertia among image pixels, defines how a pixel is 
correlated to its neighbouring pixel over the entire image. The uniformity property is 
measured by energy, and homogeneity measures how closely GLCM elements are 
distributed to diagonal elements. This method provides four feature descriptors for each 
image. 

2.4 Bag of visual words 

The bag of words method is an approach to extracting powerful features from text data 
that are used to classify documents and perform language modelling. Unique patterns or 
image patches are identified, and their features are extracted into a bag. The steps 
involved in this approach are feature extraction and code book construction. The 
vocabulary generated in the code book is used to classify images. Features are comprised 
of key points and their descriptors (Mittal and Saraswat, 2019). Key points are unique 
image points that do not change even if images are shrunk, rotated, or even expanded. 
These key points can be represented as descriptors. Identifying stand-out key points and 
extracting descriptors can be done using algorithms like scale-invariant feature transform 
(SIFT), speeded up robust features (SURF), etc. Number of clusters of descriptors is 
formed and the centre of each cluster is used as vocabularies. The histograms created 
from vocabularies and frequency of vocabularies, form the bag of visual words in the 
proposed method. This method was proposed for text data classification, it can be applied 
on medical images too. It focuses on frequency of occurrence of pixels in an image which 
is suitable to the proposed image dataset. 

2.5 Histogram of oriented gradients 

HOG is a powerful shape descriptor that can be used in object detection applications. The 
HOG (Raghavendra et al., 2019) descriptor is based on the calculation of intensity 
gradients along x and y directions, which uniquely represent local shape and appearance 
within an image patch. The magnitude of the gradient is large at corners and edges due to 
the sharp change in intensity. The entire image is subdivided into small regions of size 
[M, N] for which oriented gradients are calculated. HOG generates a histogram for each 
of these regions separately. Later, the histogram of each region is normalised to reduce 
lightning variation. Finally, all the image’s features are obtained by combining 
normalised histogram bins of smaller regions. 

2 2
x yMag Gradient g g= +  (6) 

arctan y

x

g
Direction of gradient θ

g
=  (7) 

where gx and gy are resultant gradients in x and y direction for the pixel. 
Figure 1 depicts typical visualisations of HOG feature descriptors of various cell 

sizes. The dataset in RGB colour is converted to greyscale and later binarised to extract 
descriptors. As cell size decreases, the length of descriptors increases with increased 
memory space. The magnitude and direction of gradients can be computed using 
equations (6) and (7). 
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Figure 1 Visualisation of HOG feature descriptors for different cell size (see online version  
for colours) 

 

2.6 Sequential forward selection 

Feature selection reduces a high dimensional feature vector to a low-dimensional space 
that leads to better generalisation capabilities, reduced complexity, and reduced run-time 
(Kumar et al., 2021; Khaire and Dhanalakshmi, 2022; Pahuja et al., 2022). Feature 
selection algorithms require a search method and an objective function to evaluate 
selected subsets or candidates. The objective function estimates candidate subsets, 
returning a metric of their goodness as feedback to the search method to select new 
subsets. SFS follows heuristic search for features (Acharya et al., 2019) and evaluates 
using wrapper methods. It can add or delete features sequentially but tends to get trapped 
at local minima (Ashok and Aruna, 2016). It provides excellent computational efficiency 
by filtering out redundant and irrelevant features. It eventually starts with an empty set 
and sequentially adds the feature a+ that, when combined with the earlier features Xk, 
yields the highest objective function O(Xk+a+) (Dey et al., 2020). The SFS algorithm 
attempts to select the best features for a given ML algorithm through resampling or cross 
validation. The SFS method is more accurate since it gets tuned to meet classification 
constraints (Jain and Zongker, 1997). It has good generalisation ability and a mechanism 
to prevent overfitting. The only disadvantage of SFS is that once added, the feature 
cannot be discarded. Since it trains a classifier model for every subset of features, 
execution is very slow. 

2.7 Principal component analysis 

Classification is the process of categorising detected objects of interest into a set of 
predefined classes. Supervised classification learns from labelled features of training data 
and classifies unlabeled test data into predefined classes. Unsupervised classification 
corresponds to grouping unlabelled data into classes based on analysis made by software. 
A few supervised techniques include SVM, decision trees, naïve Bayes, and KNN. PCA 
is a statistical technique for obtaining low-dimensional data from high-dimensional data 
by selecting relevant features that encapsulate the most information from the dataset. The 
optimal search strategy and filter method of evaluation make PCA independent of 
predictive classification accuracy. The intrinsic properties of features, such as the 
distance between interclass points, are used to select them. The principle involved in 
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PCA (Song et al., 2010) is to find the largest eigenvalue of the covariance of input data 
points and choose the first principal component based on the largest variance. The next 
highest being next principal component, and so on. The principal components have no 
correlation with one another. It can compute non-iteratively on a dataset, which is much 
faster than a training session for a classifier. 

3 Methodology 

The proposed leukocyte classification methodology shown in Figure 2 incorporates 
preprocessing of the images, dataset preparation for training and testing, feature 
extraction and selection, classifier model training, testing, and evaluation with 
performance metrics. The steps involved are summarised as follows: 

1 preprocess the images using the CLAHE enhancement algorithm 

2 extract feature descriptors using LBP, GLCM, BOVW and HOG 

3 select minimum features using SFS and PCA. 

4 build a classifier with a training dataset using SVM algorithm with optimised hyper 
parameters. 

5 evaluate the model’s performance 

6 compute performance metrics: accuracy, precision, F1-score, FNR, FPR, etc. 

The images in the dataset are usually affected by many artefacts due to microscopic 
magnification, non-uniform illumination, staining modalities, and many other clinical 
conditions during image acquisition. To address these issues, image preprocessing is 
performed firstly, so that most of the meaningful information in the image can be 
obtained and used to interpret further processing. 

The CLAHE enhancement of image is performed as follows: 

1 read the original image input 

2 convert an RGB colour space image to Lab colour space 

3 scale values to a range of 0 to 1 

4 perform CLAHE using the MATLAB function adapthisteq on L channel of the 
image by selecting a tile size of [M N] and clip limit within 0 to 1 

5 scale back L-channel values to normal. 

6 convert the enhanced image back to RGB colour space. 

7 compute the no reference quality measure using the natural image quality evaluator 
(NIQE) metric on original RGB input image and enhanced RGB image. 

8 compare the NIQE values to check for enhancement. 
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Figure 2 Flow diagram of proposed methodology (see online version for colours) 
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Colour, shape, and texture features are powerful descriptors that can represent objects of 
interest in an image. The texture being the most eminent feature with high discriminative 
ability, this work explored the GLCM and LBP models to extract features from CLAHE 
enhanced image. Features are relevant to a specific problem and can be extracted either 
manually or automatically based on domain knowledge. Specialised algorithms or 
networks like deep neural networks capable of extracting features automatically without 
human intervention have a drawback of complex computations and expensive resources. 
In the proposed method, LBP, GLCM, BOVW, HOG feature extraction algorithms are 
implemented to obtain a set of features. The prominent features extracted from the 
previous step contain discriminating signatures along with some redundant records that 
need to be identified and removed. There are two types of features: features that are 
highly correlated with each other and the features that are highly correlated with the 



   

 

   

   
 

   

   

 

   

    CLAHE enhanced hybrid feature descriptors for classification 319    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

target class. Features that have a high correlation with one another may have the same 
effect on the target variable, and hence can be discarded as a redundant feature. Features 
with a high correlation with the target class contribute more to the classifier model’s 
quality and must be retained. Hence, in the proposed method, for the removal of 
redundant features and to reduce the training and testing complexity, SFS and PCA 
methods are employed. 

Later, SVM is used for classification as it is computationally efficient on small and 
large balanced datasets, requires less memory space, and offers greater classification 
performance (Tsang et al., 2005; Menon, 2009; Li and Yu, 2014; Okwuashi and 
Ndehedehe, 2020; Althnian et al., 2021). Because, the SVM hyperplane completely relies 
on support vectors, the size of a dataset has no effect on its performance if all its data is in 
support vectors. 

The trained SVM classifier is then evaluated using various performance metrics such 
as false negative rate (FNR), false positive rate (FPR), precision, specificity, sensitivity, 
accuracy, and f1-score (Tali et al., 2021). These metrics are calculated by extracting data 
from the confusion matrix. A confusion matrix (Mimura, 2023) is a [M, N] matrix that 
summarises model performance, with M being the number of true classes and N being the 
predicted classes. The matrix compares predicted classes by the model to actual ground 
truth classes. For a binary classification problem, the confusion matrix is a 2×2 matrix, as 
shown in Table 1. True positive (TP) and true negative (TN) values define the predicted 
value that exactly matches the target class’s true value. The errors: false positive (FP) and 
false negative (FN) define predicted classes that do not match the true class. False 
positives are a major source of concern in the medical field because ALL infected cells 
are misidentified as healthy cells, leading to expensive and harmful medication for 
patients who do not have the disease. At the same time, patients are missing a chance to 
be treated for their true illness (Allen, 2020). Misdiagnosis is a threat to humans that 
eventually leads to loss of life (Gárate-Escamila et al., 2020). Equations (8) to (15) depict 
the performance metrics of classification algorithm derived from a confusion matrix. 

TP TNAccuracy
TP TN FP FN

+=
+ + +

 (8) 

( ) TPSensitivity Recall
TP FN

=
+

 (9) 

TNSpecificity
TN FP

=
+

 (10) 

TPPrecision
TP FP

=
+

 (11) 

( ) FPFalse positive rate FPR
FP TN

=
+

 (12) 

( ) FNFalse negative rate FNR
FN TP

=
+

 (13) 

21- .Recall PrecisionF Score
Recall Precision

∗=
+

 (14) 
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Table 1 Confusion matrix 
Tr

ue
  

cl
as

s Predicted Class 
True positive (TP) False negative (FN) 
False positive (FP) True negative (TN) 

In this study, positive class is healthy cell and negative class is ALL infected cell. 
Accuracy in equation (8) is a metric used to evaluate binary classifiers. It measures how 
many predictions made by classifier model are correct. Sensitivity (recall) in equation (9) 
measures the capability to correctly predict the positive class. Specificity in equation (10) 
measures capability to correctly predict the negative class. Precision in equation (11) 
measures the positive prediction rate. F1-score is a measure of the accuracy of a classifier 
model in terms of recall and precision. 

4 Results 

The experimentation is carried out on a PC with a Core i3-2350M CPU at 2.3GHz, 8GB 
RAM and the Windows 10 operating system. The simulation of the proposed 
methodology is performed using MATLAB R2019a. The proposed methodology is 
implemented using a standard and freely available benchmark dataset called ALLIDB 
(Labati et al., 2011), which has two distinct datasets: ALLIDB1 and ALLIDB2. 
ALLIDB1 is used for cell segmentation, and ALLIDB2 is used for cell classification. 
ALLIDB1 contains 108 images for segmentation, and ALLIDB2 contains 260 cropped 
normal and blast cell images from ALLIDB1 for classification. The 260 images in the 
dataset are divided into two classes: 130 images are of healthy lymphocyte cells, and  
130 images belong to unhealthy lymphocyte cells that are infected by ALL. The healthy 
cell images are considered positive class, and unhealthy cell images are negative class. 
The dataset is made up of 24 JPEG images with a colour depth of 24 captured by a Canon 
PowerShot G5 camera. A resolution of 257×257 was used to obtain 130 candidate 
lymphoblasts and healthy lymphocytes each, observed under a laboratory optical 
microscope with magnifications from 300 to 500. 

ALLIDB images are dull, with broken edges and no discernible difference between 
nucleus and cytoplasm. The images have washed-out texture and low contrast, out of 
which distinguishable features cannot be extracted. Hence, the images were first 
enhanced using the CLAHE model with a tile size of [8×8] and clip limit of 0.01.  
Figure 3 shows CLAHE enhanced images (second row) in comparison to original RGB 
images (first row). The quality of images before and after enhancement is measured using 
the NIQE image quality metric, which is a reference less or blind image quality score. 

Table 2 gives a comparison of NIQE metrics for some dataset image files before and 
after enhancement operations. Dataset images are named as Imxxx_y_output, where x 
represents the image number and y represents an unhealthy (1) or healthy (0) leukocyte 
cell. The NIQE values in the table indicate that the quality of the image is improved after 
the preprocessing step. 
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Figure 3 CLAHE enhanced Images (first row – original images, second row – enhanced images) 
(see online version for colours) 

 

In the feature extraction process, 59 features are extracted using the LBP technique, and 
in parallel, GLCM extracted contrast, energy, correlation, and homogeneity features for 
each of the 260 enhanced images. The extracted features are split 80:20 between the 
training and test sets. K-fold cross validation of 10 is applied on to the validation set 
prepared from the training set. Later, the feature selection methods were applied to select 
the optimum features for classification using two methods: SFS and PCA. The plots of 
the number of principal components on the x-axis and percentage information retained 
along the y-axis indicate the optimal number of features to be selected as given in  
Figure 4. 
Table 2 Comparison of original and CLAHE enhanced images using NIQE metric 

Images Images files Original RGB image 
quality 

CLAHE enhanced 
image quality 

Unhealthy Im070_1_output 4.3077 5.1025 
Im044_1_output 4.5948 5.2775 
Im003_1_output 5.2841 5.8231 
Im065_1_output 5.1619 5.6302 
Im123_1_output 4.1421 4.6885 

Healthy Im131_0_output 4.3232 4.9369 
Im135_0_output 3.7128 4.2270 
Im142_0_output 4.4942 4.6160 
Im148_0_output 3.4664 3.7394 
Im175_0_output 3.6686 3.8779 
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Figure 4 Principal components verses percentage of original data preserved 

 

While the SFS method validated optimal features using a Bayesian optimisation 
algorithm, the best hyperparameters were obtained after 30 iterations. The optimise 
hyper-parameter function is used to generate optimal expected and observed values of 
two parameters: box constraint (C) and kernel scale (γ). The model created with the best 
hyperparameters is validated using test data. Iteration plots of optimising 
hyperparameters are shown in Figure 5. 

Figure 5 SVM hyper-parameter optimisation iteration (see online version for colours) 

 

The iteration history and optimum values for k-fold cross validation of 10 features and 
the final feature columns selected are shown below: 
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K-fold cross validation = 10 
Final columns included: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 62 
Best observed feasible point: 
Box constraint: 214.44 
Kernel scale: 0.21139 
Function evaluation time = 0.11323 
Estimated objective function value = 0.17451 
Observed objective function value = 0.17308 
Best estimated feasible point (according to models): 
Box constraint: 131.3 
Kernel scale: 0.20221 
Estimated function evaluation time = 0.11427 
Estimated objective function value = 0.17451 

The bag of visual words algorithm is applied to the database to select feasible feature 
point locations using the grid method. 652,288 SURF features from 208 training set 
images are extracted with a block width of [32 64 96 128] and a grid step of [8 8].  
500 visual word vocabularies are created using k-means clustering algorithm from 80% 
of the strongest features. Clustering converged after 16 iterations at 5.64 seconds per 
iteration. With 521,830 features, 96% accuracy for training data and 90% accuracy for 
the test dataset were obtained. 

Table 3 shows a comparative analysis of performance (without and with CLAHE) for 
variously implemented feature extraction and feature selection models for the given 260 
image dataset. Table 4 depicts the confusion matrix parameters for various feature 
extraction models implemented in this study. Results indicate that the combined LBP and 
GLCM model have a low false positive rate, and a bag of visual words indicates that the 
incorrect prediction rate is very low. Table 5 shows the performance comparison for each 
feature extraction model used. 
Table 3 Comparison of performance for various Feature extraction and feature selection 

models 

Feature 
extraction 
models 

Feature size 
Feature 
selection 

model 

Subset 
feature size 

Accuracy 
(without 
CLAHE) 

Accuracy 
(with 

CLAHE) 
LBP 59 PCA 16 57.69 82.6923 

SFS 16 78.8 84.6154 
GLCM 4 PCA 4 57.7 67.3077 

SFS 4 67.3 78.8462 
LBP+GLCM 63 PCA 20 60 70.1234 

SFS 20 78.9 92.3077 
Bag of visual 
words 

652,288 K-means 
clustering  
(in-built) 

521,830 80.77 90 

HOG Cell size [4 4] 
– 108,900 

NIL 108,900 76.9231 90.3846 
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Table 4 Confusion matrix parameters for various feature class 

Feature extraction 
models 

True positive 
(TP) 

False negative 
(FN) 

False positive 
(FP) 

True negative 
(TN) 

LBP 24 2 6 20 
GLCM 19 7 4 22 
LBP+GLCM 27 3 1 21 
Bag of visual words 22 4 1 25 
HOG 23 3 2 24 

Table 5 Comparison of performance metrics for various feature extraction techniques 

Features Accuracy Sensitivity Specificity Precision FPR FNR F1-score 
LBP 84.6154 92.3 76.92 80 23.07 7.7 85.71 
GLCM 78.8462 73.08 84.61 82.6 15.38 26.9 77.55 
LBP+GLCM 92.3077 88.46 96.15 95.83 3.846 11.538 92 
Bag of visual 
words 

90 84.61 96.15 95.65 3.85 15.38 89.79 

HOG 90.3848 88.46 92.3 92 7.6 11.53 90.20 

Table 6 shows the comparison of the proposed method with the existing techniques with 
respect to accuracy. Results show that LBP features are more efficient in discriminating 
positive classes, improving classifier sensitivity, which measures the probability of 
correctly classifying a positive class. Combining LBP and GLCM with SURF features 
better predicted negative classes. The highest precision of 95.833 and the highest  
F1-score of 92% are seen for combined LBP and GLCM features indicating that the 
combined effect of texture features (Humeau-Heurtier, 2019) is best for the ALLIDB 
dataset. The FPR and FNR are lowest for combined LBP and GLCM features, indicating 
better performance for the proposed methodology. Overall, the method demonstrated 
great promise in distinguishing healthy and ALL infected cells in microscopic blood 
smear images. 
Table 6 Binary classification comparison for proposed model with state of art methods 

Dataset 
used Method Classifier model (feature extraction 

method) Accuracy 

ALLIDB Rodrigues et al. (2016) Image processing  
(morphological operators) 

85% 

Ahmed et al. (2019) CNN 88.25% 
Mishra et al. (2018) SVM  

(grey level run length matrix features) 
89.76% 

Moshavash et al. (2018) SVM (LBP) 89.81% 
Sahlol et al. (2017) NN (GLCM) 91.8% 

Proposed model SVM (LBP+GLCM) 92.3077% 
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The experimentation shows that the results are completely dependent on the quality of the 
images, the features extracted, the classifier model used, and the software environment. 
The morphology of cells in the images shows that the difference between healthy and 
unhealthy ALL cells is not so prominent. Healthy lymphocytic cells are spherical in 
shape and contain a single large nucleus. The unhealthy lymphocytic cells are elongated, 
shape and their nucleus cover 90% of the cytoplasm. Small holes called vacuoles are seen 
within the nucleus of unhealthy cells. Hence, it is challenging for machine learning 
models to deal with such diverse and complex medical images. As compared to 
morphological operators used (Rodrigues et al., 2016; Li et al., 2018) for preprocessing 
the images, CLAHE results in better quality, as evident from Figure 3 and Table 2. The 
results obtained from feature extraction techniques like LBP and GLCM from  
CLAHE-enhanced images are good compared to features extracted from SURF and 
HOG. Since the structural similarity of cells in images is high, shape-based SURF and 
HOG feature extraction methods are not suitable, as evident from the results. The 
combined effect of texture features improved classification results significantly while 
using less time and memory. The SFS feature selection approach is highly robust and 
reliable as it selects features that meet classification constraints compared to hybrid 
feature selection. Because it is independent of data size, the SVM classifier converges 
faster and with less computation time and complexity than the feed-forward neural 
network and CNN. The proposed methodology is highly reliable and robust for such a 
balanced average dataset of medical images without the need for complex hardware. The 
proposed methodology, when employed as a CAD tool, is very economical and can be 
deployed in remote areas or villages for early prediction of disease and timely monitoring 
of treatment. 

5 Conclusions 

The classification of healthy and ALL infected leukocyte cell images is experimented on 
in this study using a combination of the CLAHE enhancement technique, LBP, GLCM 
feature extraction models, SFS feature selection model, and optimised SVM classifier 
model. The results show that the CLAHE model is quite effective at enhancing RGB 
dataset images with poor contrast and brightness. For the ALLIDB picture dataset, the 
combined LBP and GLCM features offer appropriate form and texture representative 
values. The combination of statistical and structural approaches, as well as their 
insensitivity to variations in illumination, resulted in the computation of good 
representative features. SFS feature selection outperformed PCA because it chooses a 
feature subset depending on the classifier prediction wrapping approach. The optimised 
linear SVM classifier works best with a binary class and a dataset of medium 
dimensionality. However, when images are rotated and local pixel variations are small, 
the texture descriptors LBP and GLCM perform poorly. Future study will involve 
experimenting with additional powerful descriptors on more complicated leukocyte cell 
picture collections. 
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