VI Semester

MACHINE LEARNING							
Course Code 21AI63 CIE Marks 50							
Teaching Hou	rs/Week (L:T:P: S)	3:0:0:0	SEE Marks	50			
Total Hours of	f Pedagogy	40	Total Marks	100			
Credits		03	Exam Hours	03			
Course Learn	ing Objectives						
 CLO 1. Define machine learning and understand the basic theory underlying machine learning. CLO 2. Differentiate supervised, unsupervised and reinforcement learning CLO 3. Understand the basic concepts of learning and decision trees. CLO 4. Understand Bayesian techniques for problems appear in machine learning CLO 5. Perform statistical analysis of machine learning techniques. 							
These are sam	ple Strategies, which teac	her can use to a	ccelerate the attainment	of the various course			
1. L	ecturer method (L) needs	not to be only t	raditional lecture method	l, but alternative effective			
t	eaching methods could be	adopted to atta	in the outcomes.				
2. U	Ise of Video/Animation to	explain function	ning of various concepts.				
3. E	ncourage collaborative (G	roup Learning)	Learning in the class.				
4. A	sk at least three HOT (Hig	her order Thinl	king) questions in the clas	ss, which promotes critical			
	IIIIIKIIIg. 	ning (DDI) subi	ah faatawa atu danta' Anali	tiaal abilla davalan daaian			
ti ti	 Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it. 						
6. I	ntroduce Topics in manifo	ld representation	ons.				
7. S	how the different ways to	solve the same	problem with different ci	rcuits/logic and encourage			
	he students to come up wi	th their own cre	eative ways to solve them	l. 1111. 1			
8. L	iscuss now every concept	can be applied	to the real world - and w	nen that's possible, it helps			
Module-1							
Introduction:							
Machine learn	Machine learning Landscape: what is ML?, Why, Types of ML, main challenges of ML						
Concept learning and Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Find S-Version Spaces and Candidate Elimination Algorithm –Remarks on VS- Inductive bias.							
Text book 2:	Chapter 1, Text book 1:0	hapter 1 and 2	2				
Teaching-	Chalk and board, Active	Learning, Probl	em based learning				
Learning							
Process							
		Modu	ıle-2				
End to end Machine learning Project: Working with real data, Look at the big picture, Get the data, Discover and visualize the data, Prepare the data, select and train the model, Fine tune your model.							
Classification : MNIST, training a Binary classifier, performance measure, multiclass classification, error analysis, multi label classification, multi output classification							
Text book 2:	Chapter 2. Chapter 3						
Teaching-	Chalk and board. Active	Learning					
Learning	<i>L</i> earning						

Process						
	Module-3					
Training Models: Linear regression, gradient descent, polynomial regression, learning curves, regularized linear models, logistic regression						
Support Vector Machine: linear, Nonlinear , SVM regression and under the hood						
Text book 2:	Chapter 4, Chapter 5					
Teaching-	Chalk and board, Problem based learning, Demonstration					
Learning						
Process						
	Module-4					
Decision Tre computationa	ees Training and Visualizing DT, making prediction, estimating class, the CART training, I complexity, GINI impurity, Entropy, regularization Hyper parameters, Regression, instability					
Ensemble lea forests, Boosti	r ning and Random Forest : Voting classifiers, Bagging and pasting, Random patches, Random ng, stacking					
Text book 2:	Chapter 6, Chapter 7					
Teaching-	Chalk& board, Problem based learning					
Learning						
Process						
	Module-5					
Bayes Theore Optimal Class Algorithm	em – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes ifier – Gibbs Algorithm – Naïve Bayes Classifier– example-Bayesian Belief Network – EM Chapter 6					
Teaching-	Chalk and board. MOOC					
Learning						
Process						
Course Outco	mes					
At the end of t	he course the student will be able to:					
CO 1. Understand the concept of Machine Learning and Concept Learning.						
CO 2. Apply	the concept of ML and various classification methods in a project.					
CO 3. Analyse various training models in ML and the SVM algorithm to be implemented.						
CO 4. Apply	the ML concept in a decision tree structure and implementation of Ensemble learning and					
CO 5 Apply	OM FOREST. Bayes techniques and explore more about the classification in MI					
Assessment [Details (both CIE and SEE)					
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The						
minimum pas	sing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to					
have satisfied the academic requirements and earned the credits allotted to each subject/ course if the						
student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a						
minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE						
(Semester End	l Examination) taken together.					
Continuous Internal Evaluation:						
Three Unit Te	sts each of 20 Marks (duration 01 hour)					
1. First t	test at the end of 5 th week of the semester					
2. Secon	d test at the end of the 10 th week of the semester					
3. Third	test at the end of the 15 th week of the semester					

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(To have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Textbooks

- 1. Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 2013
- 2. Aurelien Geron, Hands-on Machine Learning with Scikit-Learn & TensorFlow, O'Reilly, Shroff Publishers and Distributors Pvt. Ltd 2019

Reference:

- 1. Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd, 2nd Ed., 2013
- 2. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, Springer, 1st edition, 2001
- 3. Machine Learning using Python, Manaranjan Pradhan, U Dinesh Kumar, Wiley, 2019
- 4. Machine Learning, Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2020 Web links and Video Lectures (e-Resources):
 - 1. https://www.youtube.com/playlist?list=PL1xHD4vteKYVpaIiy295pg6_SY5qznc77
 - 2. https://nptel.ac.in/courses/106/106/106106139/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

VI Semester

DATA SCIENCE AND ITS APPLICATIONS						
Course Code	21AD62	CIE Marks	50			
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50			
Total Hours of Pedagogy	40 T + 20 P	Total Marks	100			
Credits	04	Exam Hours	03			
Course Learning Objectives:						
CLO 1.Demonstrate the proficient	cy with statistical a	nalysis of data to derive	insight from results and			
interpret the data findings	s visually					
CLO 2.Utilize the						
CLO 3. skills in data management	by obtaining, clear	ing and transforming th	ie data.			
CLO 4.Make use of machine learn	ing models to solve	e the business-related ch	allenges			
CLO 5. Experiment with decision	trees, neural netwo	ork layers and data parti	tion.			
CLO 6. Demonstrate how social cl	ustering shape ind	ividuals and groups in co	ontemporary society.			
Teaching-Learning Process (General	Instructions)	0 - F				
 These are sample Strategies, which teal outcomes. 1. Lecturer method (L) does not a teaching methods may be adop 2. Show Video/animation films teal 3. Encourage collaborative (Grout 4. Ask at least three HOTS (Higher thinking. 5. Adopt Problem Based Learning skills such as the ability to evalit. 6. Topics will be introduced in a 7. Show the different ways to solatheir own creative ways to solatheir own creative ways to solatheir own every concept carring improve the students' underst 	cher can use to acc mean only tradition oted to develop the o explain functionin op Learning) Learni er order Thinking) g (PBL), which fost luate, generalize, a multiple represent ve the same proble ve them. n be applied to the anding.	elerate the attainment o nal lecture method, but o outcomes. ng of various concepts. ing in the class. questions in the class, w ers students' Analytical nd analyze information n ation. m and encourage the stu real world - and when th	f the various course lifferent type of hich promotes critical skills, develop thinking rather than simply recall udents to come up with nat's possible, it helps			
Module-1: Introduction						
What is Data Science? Visualizing	Data, matplotlib,	Bar Charts, Line Char	ts, Scatterplots, Linear			
Algebra, Vectors, Matrices, Statistics	, Describing a Sing	gle Set of Data, Correlat	ion, Simpson's Paradox,			
Some Other Correlational Caveats	, Correlation an	d Causation, Probabi	lity, Dependence and			
Independence, Conditional Probability	, Bayes's Theoren	n, Random Variables, Co	ontinuous Distributions,			
The Normal Distribution, The Central L	imit Theorem.					
Chapters 1, 3, 4, 5 and 6						
Laboratory Component:						
1. Installation of Python/R langu Kaggle data set usage.	age, Visual Studio o	code editors can be demo	onstrated along with			
2. Write programs in Python/F Community Edition or any oth	 Write programs in Python/R and Execute them in either Visual Studio Code or PyCharm Community Edition or any other suitable environment. 					
3. A study was conducted to understand the effect of number of hours the students spent studying on their performance in the final evams. Write a code to plot line chart with number of hours						

on their performance in the final exams. Write a code to plot line chart with number of hours spent studying on x-axis and score in final exam on y-axis. Use a red '*' as the point character, label the axes and give the plot a title.

	Number	10	9	2	15	10	16	11	16	7
	of hrs									
	studying									
	(x)									
	Score in	95	80	10	50	45	98	38	93	
	exam (0									
	- 100)									
	(y)									
4.	For the gi check the f	ven datas requency	et mtcars distributi	s.csv (ww on of the	vw.kaggle.c variable 'm	om/ruiror pg' (Miles	nanini/mt per gallon	cars), plot)	a histograr	n to
Teachin	ng-	1. Demo	onstration	n of differe	ent charts	d difformant	diatributi	on 6		
Process	ig s	2. PPTI 3. Live	resentati	d executio	eorems an	lization w	vith simple	ons examples		
Module	-2: Hypoth	esis and	Inference	2	511101 VI540		in shipic	examples		
Statistic	al Hypothe	esis Testi	ng, Exam	ple: Flipp	oing a Coi	n, p-Value	es, Confid	ence Inter	vals, p-Hacl	king,
Example	e: Running a	an A/B Te	st, Bayesi	an Inferei	nce, Gradi	ent Desce	nt, The Ide	a Behind (Gradient Des	cent
Estimat	ing the Gra	dient, Usi	ng the Gr	adient, Ch	loosing the	Right Ste	p Size, Usi	ng Gradiei	nt Descent to	o Fit
Scraping	Models, Minibatch and Stochastic Gradient Descent, Getting Data , stdin and stdout, Reading Files, Scraping the Web Using APIs Example: Using the Twitter APIs Working with Data Exploring Your Data									
Using NamedTuples, Dataclasses, Cleaning and Munging, Manipulating Data, Rescaling, An Aside: tqdm,										
Dimensionality Reduction.										
Chapte	Chapters 7, 8, 9 and 10									
Labora	tory Compo	onent:								
1.	Consider	the	books	data	set BI	-Flickr-In	ages-Bool	c.csv f	rom Ka	iggle
(https://www.kaggle.com/adeyoyintemidayo/publication-of-books) which contains information about books. Write a program to demonstrate the following										
 Import the data into a DataFrame 										
•	 Find and drop the columns which are irrelevant for the book information. 									
•	Change the	Index of	the DataF	rame						
•	• Tidy up fields in the data such as date of publication with the help of simple regular expression.									
Combine su methods with NumPy to clean columns										
Teachin	ng-	1. Demo	onstration	n of Hypot	hesis test.					
Learnir	ng	2. PPT I	Presentat	ion to exp	lore and m	anipulate	data.			
Process	5	3. Live	coding of	concepts	with simpl	e example	S			
Madala	2. Mashin	4. Case	Study: Ex	traction o	f data from	Books da	taset			
Module	-3: Machin	e Learnir	ig Loomin	a? 0	itting and	Undorfitt	ing Corre	ctness Th	o Rice Veri	anaa
Tradeof	modeling, what is Machine Learning?, Overnitting and Undernitting, Correctness, The Bias-Variance Tradeoff Feature Extraction and Selection k-Nearest Neighbors . The Model Example: The Iris Dataset									
The Cur	The Curse of Dimensionality, Naive Bayes , A Really Dumb Spam Filter, A More Sophisticated Spam Filter,									
Implementation, Testing Our Model, Using Our Model, Simple Linear Regression, The Model, Using										

Gradient Descent, Maximum Likelihood Estimation, **Multiple Regression**, The Model, Further Assumptions of the Least Squares Model, Fitting the Model, Interpreting the Model, Goodness of Fit, Digression: The Bootstrap, Standard Errors of Regression Coefficients, Regularization, **Logistic Regression**, The Problem, The Logistic Function, Applying the Model, Goodness of Fit, Support Vector Machines.

Chapters 11, 12, 13, 14, 15 and 16

Laboratory Component:

- 1. Train a regularized logistic regression classifier on the iris dataset (https://archive.ics.uci.edu/ml/machine-learning-databases/iris/ or the inbuilt iris dataset) using sklearn. Train the model with the following hyper parameter C = 1e4 and report the best classification accuracy.
- 2. Train an SVM classifier on the iris dataset using sklearn. Try different kernels and the associated hyper parameters. Train model with the following set of hyper parameters RBF-kernel, gamma=0.5, one-vs-rest classifier, no-feature-normalization. Also try C=0.01,1,10C=0.01,1,10. For the above set of hyper parameters, find the best classification accuracy along with total number of support vectors on the test data

Teaching-	1.	Demonstration of Models
Learning	2.	PPT Presentation for techniques
Process	3.	Live coding of all concepts with simple examples

Module-4: Decision Trees

What Is a Decision Tree?, Entropy, The Entropy of a Partition, Creating a Decision Tree, Putting It All Together, Random Forests, **Neural Networks**, Perceptrons, Feed-Forward Neural Networks, Backpropagation, Example: Fizz Buzz, **Deep Learning**, The Tensor, The Layer Abstraction, The Linear Layer, Neural Networks as a Sequence of Layers, Loss and Optimization, Example: XOR Revisited, Other Activation Functions, Example: Fizz Buzz Revisited, Softmaxes and Cross-Entropy, Dropout, Example: MNIST, Saving and Loading Models, **Clustering**, The Idea, The Model, Example: Meetups, Choosing k, Example: Clustering Colors, Bottom-Up Hierarchical Clustering **Chapters 17, 18, 19 and 20**

Laboratory Component:

1. Consider the following dataset. Write a program to demonstrate the working of the decision tree based ID3 algorithm.

Price	Maintenance	Capacity	Airbag	Profitable
Low	Low	2	No	Yes
Low	Med	4	Yes	Yes
Low	Low	4	No	Yes
Low	Med	4	No	No
Low	High	4	No	No
Med	Med	4	No	No
Med	Med	4	Yes	Yes
Med	High	2	Yes	No
Med	High	5	No	Yes
High	Med	4	Yes	Yes
high	Med	2	Yes	Yes
High	High	2	Yes	No
high	High	5	yes	Yes

2. Consider the dataset spiral.txt (https://bit.ly/2Lm75Ly). The first two columns in the dataset corresponds to the co-ordinates of each data point. The third column corresponds to the actual cluster label. Compute the rand index for the following methods:

• K – m	eans Clustering					
 Single 	e – link Hierarchical Clustering					
Complete link hierarchical clustering.						
Also v	risualize the dataset and which algorithm will be able to recover the true clusters.					
Teaching-	: 1. Demonstration using Python/ R Language					
Learning	2. PPT Presentation for decision tree, Neural Network, Deep learning and clustering					
Process	3. Live coding for the concepts with simple examples					
	4. Project Work: Algorithm implementation					
Module-5: Na	tural Language Processing					
Word Clouds,	n-Gram Language Models, Grammars, An Aside: Gibbs Sampling, Topic Modeling, Word					
Vectors, Recu	rrent Neural Networks, Example: Using a Character-Level RNN, Network Analysis,					
Betweenness	Centrality, Eigenvector Centrality, Directed Graphs and PageRank, Recommender Systems ,					
Manual Cura	tion, Recommending What's Popular, User-Based Collaborative Filtering, Item-Based					
Collaborative	Filtering, Matrix Factorization.					
Chapters 21,	22 and 23					
Laboratory C	omponent:					
Mini I	Project – Simple web scrapping in social media					
Teaching-	1. Demonstration of models					
Learning	2. PPT Presentation for network analysis and Recommender systems					
Process	3. Live coding with simple examples					
Course outco	me (Course Skill Set)					
At the end of t	he course the student will be able to:					
CO 1. Identi	fy and demonstrate data using visualization tools.					
CO 2. Make	use of Statistical hypothesis tests to choose the properties of data, curate and manipulate					
data.						
CO 3. Utiliz	e the skills of machine learning algorithms and techniques and develop models.					
CO 4. Demo	nstrate the construction of decision tree and data partition using clustering.					
CO 5. Exper	iment with social network analysis and make use of natural language processing skills to					
devel	op data driven applications.					
Assessment I	Details (both CIE and SEE)					
The weighter	o of Continuous Internal Evaluation (CIE) is 50% and for Semaster End Evam (SEE) is 50%					
The weightage	c of continuous internal Evaluation (CIE) is 50% and for semester End Exam (SEE) is 50%.					
deemed to ha	ve satisfied the academic requirements and earned the credits allotted to each subject/					
course if the	student secures not less than 35% (18 Marks out of 50) in the semester-end examination					
(SEE) and a r	ninimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal					
Evaluation) ar	ad SEE (Semester End Examination) taken together					
Dvalaationja						
Continuous I	nternal Evaluation:					
Three Unit Te	sts each of 20 Marks (duration 01 hour)					
1. First t	rest at the end of 5 th week of the semester					
2. Second test at the end of the 10^{th} week of the semester						
3. Third	test at the end of the 15 th week of the semester					
Two assignme	ents each of 10 Marks					
4. First a	assignment at the end of 4 th week of the semester					
5. Secon	d assignment at the end of 9 th week of the semester					
<u> </u>						

Practical Sessions need to be assessed by appropriate rubrics and viva-voce method. This will contribute to **20 marks**.

Note: Minimum of 80% of the laboratory components have to be covered.

- Rubrics for each Experiment taken average for all Lab components 15 Marks.
- Viva-Voce- 5 Marks (more emphasized on demonstration topics)

The sum of three tests, two assignments, and practical sessions will be out of 100 marks and will be scaled down to 50 marks

(to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books

1. Joel Grus, "Data Science from Scratch", 2ndEdition, O'Reilly Publications/Shroff Publishers and Distributors Pvt. Ltd., 2019. ISBN-13: 978-9352138326

Reference Books

- 1. Emily Robinson and Jacqueline Nolis, "Build a Career in Data Science", 1st Edition, Manning Publications, 2020. ISBN: 978-1617296246.
- AurélienGéron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 2nd Edition, O'Reilly Publications/Shroff Publishers and Distributors Pvt. Ltd., 2019. ISBN-13: 978-1492032649.
- François Chollet, "Deep Learning with Python", 1st Edition, Manning Publications, 2017. ISBN-13: 978-1617294433
- Jeremy Howard and Sylvain Gugger, "Deep Learning for Coders with fastai and PyTorch", 1st Edition, O'Reilly Publications/Shroff Publishers and Distributors Pvt. Ltd., 2020. ISBN-13: 978-1492045526
- Sebastian Raschka and Vahid Mirjalili, "Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2", 3rd Edition, Packt Publishing Limited, 2019.ISBN-13: 978-1789955750

Web links and Video Lectures (e-Resources):

- 1. Using Python : https://www.python.org
- 2. R Programming : https://www.r-project.org/
- 3. Python for Natural Language Processing : https://www.nltk.org/book/
- 4. Data set: <u>https://bit.ly/2Lm75Ly</u>
- 5. Data set: https://archive.ics.uci.edu/ml/datasets.html

- 6. Data set : www.kaggle.com/ruiromanini/mtcars
- 7. Pycharm : <u>https://www.jetbrains.com/pycharm/</u>
- 8. <u>https://nptel.ac.in/courses/106/106/106106179/</u>
- 9. https://nptel.ac.in/courses/106/106/106106212/
- 10. http://nlp-iiith.vlabs.ac.in/List%20of%20experiments.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

1. Real world problem solving - Applying the machine learning techniques and developing models

VI Semester

SOFTWARE ENGINEERING & PROJECT MANAGEMENT							
Course Code 21CS61 CIE Marks 50							
Teaching Hours/Week (L:T:P: S)	2:2:0:0	SEE Marks	50				
Total Hours of Pedagogy	40	Total Marks	100				
Credits	03	Exam Hours	03				
Course Learning Objectives							
CLO 1. Outline software enginee	ring principles and	activities involved in bui	Iding large software				
Software Engineers	i and professional i	ssues and explain why th	ley are of concern to				
CLO 2 Describe the process of r	equirement gatheri	ng requirement classific	ation requirement				
specification and require	ments validation	ng, requirement classifie	ation, requirement				
CLO 3. Infer the fundamentals of	f object oriented co	ncepts, differentiate system	em models, use UML				
diagrams and apply desig	n patterns.	1 / 5	,				
CLO 4. Explain the role of DevOp	os in Agile Impleme	ntation.					
CLO 5. Discuss various types of s	software testing pra	actices and software evol	ution processes.				
CLO 6. Recognize the importanc	e Project Managem	ent with its methods and	methodologies.				
CLO 7. Identify software quality	parameters and qu	antify software using me	asurements and				
metrics. List software qua	ality standards and	outline the practices inv	olved				
Teaching-Learning Process (General	Instructions)						
	-h		C +],				
i nese are sample strategies, which tea	chers can use to acc	celerate the attainment o	i the various course				
outcomes.							
1. Lecturer method (L) need	not to be only a tra	iditional lecture method,	but alternative				
effective teaching method	s could be adopted	to attain the outcomes.					
2. Use of Video/Animation to explain functioning of various concepts.							
3. Encourage collaborative (Group Learning) Le	earning in the class.					
4. Ask at least three HOT (Hi	gher order Thinkin	g) questions in the class,	which promotes				
critical thinking.							
5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop							
design thinking skills such	n as the ability to de	sign, evaluate, generalize	e, and analyze				
information rather than si	mply recall it.						
6. Introduce Topics in manif	old representations	5.					
7. Show the different ways to	o solve the same pr	oblem with different circ	uits/logic and				
encourage the students to	come up with their	r own creative ways to so	lve them.				
8. Discuss how every concept	t can be applied to	the real world - and whe	n that's possible, it				
helps improve the student	ts' understanding.		, , , , , , , , , , , , , , , , , , ,				
	Module-1						
Introduction: The evolving role of	software Software	The changing nature of	of software Software				
engineering. A Process Framework. Pr	ocess Patterns. Pro	ocess Assessment. Perso	nal and Team Process				
Models, Process Technology, Product a	nd Process.	· · · · · · · · · · · · · · · · · · ·					
,							
Textbook 1: Chapter 1: 1.1 to 1.3							
Process Models: Prescriptive mode	ls, Waterfall mod	el, Incremental process	models, Evolutionary				
process models, Specialized process m	process models, Specialized process models.						

Textbook 1: Chapter 2: 2.1, 2.2, 2.4 to 2.7

Requirements Engineering: Requirements Engineering Task, Initiating the Requirements Engineering process, Eliciting Requirements, Developing use cases, Building the analysis model, Negotiating Requirements, Validating Requirements, Software Requirement Document **(Sec 4.2)**

Textbook 1: Chapter 3: 3.1 to 3.6, Textbook 5: Chapter 4: 4.2

	-						
Teaching-Learning Process Chalk and board, Active Learning, Problem based learning							
Module-2							
Introduction, Modelling Concepts and Class Modelling: What is Object orientation? What is OO development? OO Themes; Evidence for usefulness of OO development; OO modelling history. Modelling as Design technique: Modelling, abstraction, The Three models. Class Modelling: Object and Class Concept, Link and associations concepts, Generalization and Inheritance, A sample class model, Navigation of class models, Introduction to RUP(Textbook: 5 Sec 2.4) and UML diagrams							
Textbook 2: Chapter 1,2,3							
Building the Analysis Models : Concepts, Object Oriented Analysis Modeling, Creating a Behavioral M	Requirement Analysis, Analysis Model Approaches, Data modeling sis, Scenario-Based Modeling, Flow-Oriented Modeling, class Based odel.						
Textbook 1: Chapter 8: 8.1 to 8.8	3						
Teaching-Learning Process	Chalk and board, Active Learning, Demonstration						
	Module-3						
Software Testing : A Strategic A Conventional Software, Test Strate The Art of Debugging.	approach to Software Testing, Strategic Issues, Test Strategies for egies for Object -Oriented Software, Validation Testing, System Testing,						
Textbook 1: Chapter 13: 13.1 to	13.7						
Agile Methodology & DevOps: Be	efore Agile – Waterfall, Agile Development,						
Self-Learning Section: What is DevOps?, DevOps Importance and Benefits, DevOps Principles and Practices, 7 C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to Choose Right DevOps Tools?, Challenges with DevOps Implementation.							
Teaching-Learning Process Chalk and board, Active Learning, Demonstration							
Module-4							
Introduction to Project Management:							
Introduction to Project Management: Introduction, Project and Importance of Project Management, Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices.							
Textbook 3: Chapter 1: 1.1 to 1.1	17						
Teaching-Learning Process	Chalk and board, Active Learning, Demonstration						
	Module-5						
Activity Planning: Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical path, Activity Float, Shortening Project Duration, Activity on Arrow Networks.							
Textbook 3: Chapter 6: 6.1 to 6.1	16						
Software Quality: Introduction, The place of softwar quality models, ISO 9126, quali enhance software quality, quality p	e quality in project planning, Importance of software quality, software ty management systems, process capability models, techniques to plans.						

Textbook 3: Chapter 13: (13.1 to 13.6 , 13.9, 13.11, 13.14),

Teaching-Learning ProcessChalk and board, Active Learning, Demonstration

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Understand the activities involved in software engineering and analyze the role of various process models
- CO 2. Explain the basics of object-oriented concepts and build a suitable class model using modelling techniques
- CO 3. Describe various software testing methods and to understand the importance of agile methodology and DevOps
- CO 4. Illustrate the role of project planning and quality management in software development
- CO 5. Understand the importance of activity planning and different planning models

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the $10^{\rm th}$ week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4^{th} week of the semester
- 5. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks (duration 01 hours)**

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

- 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill.
- 2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd Edition, Pearson Education, 2005.
- 3. Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw Hill Education, 2018.

- 4. Deepak Gaikwad, Viral Thakkar, DevOps Tools From Practitioner's Viewpoint, Wiley.
- 5. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. **Reference:**

1. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.

- Weblinks and Video Lectures (e-Resources):
 - 1. <u>https://onlinecourses.nptel.ac.in/noc20_cs68/preview</u>
 - 2. <u>https://www.youtube.com/watch?v=WxkP5KR_Emk&list=PLrjkTql3jnm9b5nr-ggx7Pt1G4UAHeFlI</u>
 - 3. <u>http://elearning.vtu.ac.in/econtent/CSE.php</u>
 - 4. http://elearning.vtu.ac.in/econtent/courses/video/CSE/15CS42.html
 - 5. <u>https://nptel.ac.in/courses/128/106/128106012/</u> (DevOps)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Case study, Field visit

VI Semester

NATURAL LANGUAGE PROCESSING						
Course Code	21AI643	CIE Marks	50			
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy	40	Total Marks	100			
Credits	03	Exam Hours	03			
Course Learning Objectives						
CLO 1. Analyse the natural lang	uage text.					
CLO 2. Define the importance of	natural language.					
CLO 3. Understand the concepts	rieval techniques					
Teaching-Learning Process (Genera	Instructions)					
These are sample Strategies, which tea	chers can use to acc	elerate the attainment o	f the various course			
outcomes.						
1. Lecturer method (L) need	l not to be only a tra	ditional lecture method,	but alternative			
effective teaching method	ls could be adopted	to attain the outcomes.				
2. Use of Video/Animation t	o explain functionin	g of various concepts.				
3. Encourage collaborative	Group Learning) Le	arning in the class.				
4 Ask at least three HOT (H	igher order Thinkin	g) questions in the class	which promotes			
critical thinking	.8	8) questions in the stably	in the promotod			
5 Adopt Problem Based Lea	urning (PRL) which	fosters students' Analyti	cal skills, develop			
design thinking skills suc	h as the ability to de	sign evaluate generaliz	e and analyze			
information rather than s	imply recall it	Sign, evaluate, generaliz	e, and analyze			
6 Introduce Topics in mani	fold representations					
7 Show the different ways t	o solvo tho samo pre	- agram				
9 Discuss how every concer	ot can be applied to a	the real world and whe	n that's possible it			
balas improve the studen	te' understanding	ule leal world - allu wile	in that's possible, it			
	unuerstanding.					
	Mouule-1					
Drocossing Indian Languages NLP	Applications Inform	nd challenges of NLP-L	anguage and Grammar-			
Grammar- based Language Models-Sta	Applications-inform	ndel	age Mouening: various			
Granniar Basea Bangaage Models Ba	leistical hanguage in	ouen				
Textbook 1: Ch. 1,2						
Teaching-Learning Process (Chalk and board, On	line demonstration, Pro	blem based learning			
	Module-2					
Word level and syntactic analysis:	Word Level Analys	is: Regular Expressions	-Finite-State Automata-			
Morphological Parsing-Spelling Error	Detection and corre	ection-Words and Word	classes-Part-of Speech			
Tagging. Syntactic Analysis: Context-fr	ee Grammar-Consti	tuency- Parsing-Probabi	listic Parsing.			
1 extdook 1: Ch. 3,4						
Teaching Learning Process Chalk and heard Online Demonstration						
Module-3						
Introduction Subsequence Kernels	or Relation Extrac	tion A Dependency Pauls:	th Kernel for Relation			
Extraction and Experimental Evaluation	on.	tion, A Dependency I a	th Kerner for Kelation			
Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles: Introduction. Domain						
Knowledge and Knowledge Roles, Fra	ame Semantics and	Semantic Role Labeling	, Learning to Annotate			
Cases with Knowledge Roles and Evaluations.						

A Case Study in Natural Language Based Web Search: InFact System Overview, The GlobalSecurity.org Experience.

Textbook 2: Ch. 3,4,5

Teaching-Learning ProcessChalk and board, Online Demonstration

Module-4

Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models: Introduction, iSTART: Feedback Systems, iSTART: Evaluation of Feedback Systems,

Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures: Introduction, Cohesion, Coh-Metrix, Approaches to Analyzing Texts, Latent Semantic Analysis, Predictions, Results of Experiments.

Automatic Document Separation: A Combination of Probabilistic Classification and Finite-State Sequence Modeling: Introduction, Related Work, Data Preparation, Document Separation as a Sequence Mapping Problem, Results.

Evolving Explanatory Novel Patterns for Semantically-Based Text Mining: Related Work, A Semantically Guided Model for Effective Text Mining.

Textbook 2: Ch. 6,7,8,9

 Teaching-Learning Process
 Chalk and board, Online Demonstration

 Module-5

INFORMATION RETRIEVAL AND LEXICAL RESOURCES: Information Retrieval: Design features of Information Retrieval Systems-Classical, Non classical, Alternative Models of Information Retrieval – valuation Lexical Resources: World Net-Frame Net- Stemmers-POS Tagger- Research Corpora.

Textbook 1: Ch. 9,12

Teaching-Learning Process	Chalk and board, Online Demonstration
---------------------------	---------------------------------------

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Analyse the natural language text.
- CO 2. Define the importance of natural language.
- CO 3. Understand the concepts Text mining.
- CO 4. Illustrate information retrieval techniques.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks (duration 01 hours)**

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

- 1. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.
- 2. Anne Kao and Stephen R. Poteet (Eds), "Natural LanguageProcessing and Text Mining", Springer-Verlag London Limited 2007.

Reference Books:

- 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing: Anintroduction to Natural Language Processing, Computational Linguistics and SpeechRecognition", 2nd Edition, Prentice Hall, 2008.
- 2. James Allen, "Natural Language Understanding", 2nd edition, Benjamin/Cummingspublishing company, 1995.
- 3. Gerald J. Kowalski and Mark.T. Maybury, "Information Storage and Retrieval systems", Kluwer academic Publishers, 2000.

Weblinks and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

VII Semester

DATA VISUALIZATION						
Course Code	21AD71	CIE Marks	50			
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy	40	Total Marks	100			
Credits	03	Exam Hours	03			

Course Learning Objectives

- CLO 1. Understand and use various plot types with Python
- CLO 2. Explore and work with different plotting libraries
- CLO 3. Create effective visualizations
- CLO 4. Implement exemplary applications related to Network Programming and Web Service
- CLO 5. Exhibit the awareness of the importance and limitation of the exploratory data analysis paradigm

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in a multiple representation.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.

Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.

Module-1: Data Visualization and Data Exploration

Introduction: Data Visualization, Importance of Data Visualization, Data Wrangling, Tools and Libraries for Visualization

Overview of Statistics: Measures of Central Tendency, Measures of Dispersion, Correlation, Types od Data, Summary Statistics

Numpy: Numpy Operations - Indexing, Slicing, Splitting, Iterating, Filtering, Sorting, Combining, and Reshaping

Pandas: Advantages of pandas over numpy, Disadvantages of pandas, Pandas operation - Indexing, Slicing, Iterating, Filtering, Sorting and Reshaping using Pandas

Text Book 1: Chapter 1

Teaching-	5. PPT – Visualization tools	
Learning	6. Demonstration of operations on data	
Process		
Module-2: Plots		

Comparison Plots: Line Chart, Bar Chart and Radar Chart; Relation Plots: Scatter Plot, Bubble Plot,

Correlogram and Heatmap; **Composition Plots:** Pie Chart, Stacked Bar Chart, Stacked Area Chart, Venn Diagram; **Distribution Plots:** Histogram, Density Plot, Box Plot, Violin Plot; **Geo Plots:** Dot Map, Choropleth Map, Connection Map; What Makes a Good Visualization?

A Deep Dive into Matplotlib

Introduction, Overview of Plots in Matplotlib, **Pyplot Basics:** Creating Figures, Closing Figures, Format Strings, Plotting, Plotting Using pandas DataFrames, Displaying Figures, Saving Figures; **Basic Text and Legend**

Functions: Labels, Titles, Text, Annotations, Legends; **Basic Plots**:Bar Chart, Pie Chart, Stacked Bar Chart, Stacked Area Chart, Histogram, Box Plot, Scatter Plot, Bubble Plot; **Layouts**: Subplots, Tight Layout, Radar Charts, GridSpec; **Images**: Basic Image Operations, Writing Mathematical Expressions

Text Book 1: Chapter 2, Chapter 3

Teaching-	3. PPT - Visualization techniques
Learning	4. Demonstration of operations on plots using Matplotlib
Process	
	Module-3: Simplifying Visualizations using Seaborn

Introduction, Advantages of Seaborn **Controlling Figure Aesthetics:** Seaborn Figure Styles, Removing Axes Spines, Contexts; **Color Palettes:** Categorical Color Palettes, Sequential Color Palettes, Diverging Color Palettes; **Interesting Plots in Seaborn:** Bar Plots, Kernel Density Estimation, Plotting Bivariate Distributions, Visualizing Pairwise Relationships, Violin Plots;

Text Book 1: Chapter 4

Teaching-	1. PPT - Visualization techniques
Learning	2. Demonstration of operations on plots using Seaborn
Process	

Module-4: Plotting Geospatial Data

Introduction, Geoplotlib, The Design Principles of Geoplotlib, Geospatial Visualizations, Tile Providers, Custom Layers, Introduction to Folium

Visualizing Data: Building a Google map from geocoded data, Visualizing networks and interconnection and Visualizing mail data

Making Things Interactive with Bokeh

Introduction, Bokeh, Concepts of Bokeh, Interfaces in Bokeh, Output, Bokeh Server, Presentation, Integrating, Adding Widgets

Text Book 1: Chapter5, Chapter 6

Teaching-	5. PPT - Visualization techniques
Learning	6. Demonstration of operations using Geoplotlib
Process	
	Module 5. Notworked Drograms

Module-5: Networked Programs

HyperText Transfer Protocol – HTTP, The World's Simplest Web Browser, Retrieving an image over HTTP, Retrieving web pages with urllib, Parsing HTML and scraping the web, Parsing HTML using regular expressions, Parsing HTML using BeautifulSoup, Reading binary files using urllib

Using Web Services

eXtensibleMarkup Language – XML, Parsing XML, Looping through nodes, JavaScript Object Notation – JSON, Parsing JSON

Text Book 2: Chapters 12 and Chapter 13

Teaching-	7.	PPT – On web services, browsers, HTTP, HTML
Learning	8.	Demonstration of parsing and looping - XML, JSON
Process		

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Demonstrate the data visualization techniques.
- CO 2. Analyze data represented in the form of graphs & charts
- CO 3. Experiment with different visualization tools
- CO 4. Identify geospatial data and interconnection of data.
- CO 5. Make use of the web for data extraction

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books

- 1. Data Visualization workshop, Tim Grobmann and Mario Dobler, Packt Publishing.
- 2. Python for Everybody: Exploring Data Using Python 3, Charles R. Severance, Create Space Independent Publishing Platform, 1st Edition, 2016

Reference:

- 1. "Data Visualization": A Successful Design Process, Kirk, Andy, Packt Publishing Ltd, 2012
- 2. Think Python: How to Think Like a Computer Scientist, Allen B. Downey, Green Tea Press, 2nd Edition, 2015
- 3. Interactive Data visualization for the Web, Murray, Scott, O'Reilly Media, Inc., 2013
- 4. Visualizing Data: Exploring and Explaining Data with The Processing Environment, Fry, Ben, O'Reilly

Media, Inc., 2007

Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/watch?v=eFByJkA3ti4
- 2. <u>https://www.youtube.com/watch?v=JhK2qVi5dC4</u>
- 3. <u>https://www.youtube.com/watch?v=UjYzNhBVIvY</u>
- 4. <u>http://book.visualisingdata.com/</u>
- 5. <u>https://matplotlib.org/</u>
- 6. <u>https://docs.python.org/3/tutorial/</u>
- 7. https://www.tableau.com/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

C	VILENGINEERI	NG	
Choice Based Credit System	(CBCS) and Outc	ome Based Education (OBE	
	SEMESTER - IV		,
CON	CRETE TECHNO	LOGY	
Course Code	18CV44	CIE Marks	40
Teaching Hours/Week(L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03
		L	<u> </u>
Course Learning Objectives: This course	e will enable student	ts to:	
1. To recognize material characterization	of ingredients of co	ncrete and its influence on pro	perties
of concrete	U		1
2. Proportion ingredients of Concrete to	arrive at most desir	able mechanical properties of	f
Concrete.			
3. Ascertain and measure engineering pro	perties of concrete i	n fresh and hardened state wh	ich meet
the requirement of real time structures.	•		
Module-1			
Concrete Ingredients Cement – Cement m	anufacturing proces	s, steps to reduce carbon foot	print, chemical
composition and their importance, hydra	ation of cement, t	ypes of cement. Testing of	cement. Fine
aggregate: Functions, requirement, Altern	atives to River san	d, M-sand introduction and r	nanufacturing.
Coarse aggregate: Importance of size, sha	pe and texture. Gra	ding and blending of aggrega	ate. Testing on
aggregate, requirement. Recycled aggreg	gates Water – qu	alities of water. Chemical	admixtures -
plasticizers, accelerators, retarders and air	entraining agents. N	Mineral admixtures – Pozzola	nic and
cementitious materials, Fly ash, GGBS, silie	ca fumes, Metakaoli	in and rice huskash.	
Module-2			
Fresh Concrete Workability-factors a	ffecting workabili	ty. Measurement of work	ability-slump,
Compaction factor and Vee-Bee Consisto	ometer tests, flow t	ests. Segregation and bleeding	ng. Process of
manufacturing of concrete- Batching, Mixir	ng, Transporting, Pl	acing and Compaction. Curing	g – Methods of
curing - Water curing, membrane curing,	steam curing, acce	elerated curing, self- curing.	Good and Bad
practices of making and using fresh concr	ete and Effect of h	eat of hydration during mass	concreting at
project sites.			
Module-3			
Hardened Concrete Factors influencing st	trength, W/C ratio,	gel/space ratio, Maturity conc	ept, Testing of
hardened concrete, Creep -facto rs affectin	ng creep. Shrinkage	e of concrete – plastic shrinki	ing and drying
shrinkage, Factors affecting shrinkage. D	efinition and signi	ficance of durability. Interna	l and external
factors influencing durability, Mechanism	s- Sulphate attack -	- chloride attack, carbonation	i, freezing and
thawing. Corrosion, Durability requirement	ts as per IS-456, In	situ testing of concrete- Penet	ration and pull
out test, rebound hammer test, ultrasonic	pulse velocity, co	re extraction – Principal, ap	plications and
limitations.			
Module-4			
Concrete Mix Proportioning			
Concept of Mix Design with and without a	dmixtures, variable	s in proportioning and Exposi	are conditions,
Selection criteria of ingredients used for mi	x design, Procedure	of mix proportioning. Numer	ical Examples
of Mix Proportioning using IS-10262:2019.			
Module-5			
Special Concretes			
RMC- manufacture and requirement as per	QCI-RMCPCS, pro	perties, advantages and disad	vantages. Self-
Compacting concrete- concept, materials,	tests, properties, ap	pplication and typical mix Fi	ber reinforced
concrete - Fibers types, properties, applic	ation of FRC. Lig	ht weight concrete-material	properties and
types. Typical light weight concrete mix	and applications, m	naterials, requirements, mix p	proportion and
properties of Geo polymer Concrete, High S	strength Concrete ar	ad High Performance Concrete	2.
Course outcomes: After studying this cou	rse, students will be	able to:	
1. Relate material characteristics and	their influence on n	ncrostructure of concrete.	
2. Distinguish concrete behavior base	ed on its fresh and h	ardened properties.	
3. Illustrate proportioning of differen properties using professional code	t types of concrete r s.	nixes for required fresh and ha	rdened

- 4. Adopt suitable concreting methods to place the concrete based on requirement.
- 5. Select a suitable type of concrete based on specific application.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. Neville A.M. "Properties of Concrete"-4th Ed., Longman.
- 2. M.S. Shetty, Concrete Technology Theory and Practice Published by S. Chand and Company, New Delhi.
- 3. Kumar Mehta. P and Paulo J.M. Monteiro "Concrete-Microstructure, Property and Materials", 4th Edition, McGraw Hill Education, 2014
- 4. A.R. Santha Kumar, "Concrete Technology", Oxford Un iversity Press, New Delhi (NewEdition).

Reference Books:

- 1. M L Gambir, "Concrete Technology", McGraw Hill Education, 2014.
- 2. N. V. Nayak, A. K. Jain Handbook on Advanced Concrete Technology, ISBN: 978-81-8487-186-9
- 3. Job Thomas, "Concrete Technology", CENGAGE Learning, 2015.
- IS 4926 (2003): Code of Practice Ready-Mixed Concrete [CED 2: Cement and Concrete] Criteria for RMC Production Control, Basic Level Certification for Production Control of Ready Mixed Concrete-BMTPC.
- 5. Specification and Guidelines for Self-Compacting Concrete, EFNARC, Association House.

Choice Based Credit	B. E. CIVIL ENGIN System (CBCS) and O	EERING	lucation (OBF)	
	SEMESTER	- V		
DESIG	<u> GN OF RC STRUCTU</u>	RAL ELEMENT	S	
Course Code	18CV53		CIE Marks	40
Teaching Hours/Week(L:T:P)	(3:2:0)		SEE Marks	60
Credits	04		Exam Hours	03
 Course Learning Objectives: This 1. Identify, formulate and solve of loading. 2. Follow a procedural knowledge 3. Impart the usage of codes for structure 4. Provide knowledge in analysis a 	course will enable stud engineering problems of in designing various str cength, serviceability an and design of RC eleme:	ents to of RC elements s uctural RC element d durability. nts.	ubjected to differnts.	rent kinds of
Module-1	0			
Introduction to working stress Difference between Working stress and evaluation of design constants to Philosophy and principle of limit st and strength. Stress block parameter section. Limiting deflection, short term d reinforced beam only. Cracking in reinforced beam. Side face reinforced	and limit State Des and Limit State Method for working stress method at design with assumption ers, concept of balance effection, long term d n reinforced concrete r ement, slender limits of	ign: Introductior d of design, Modu od. otions. Partial Safe d section, under r leflection, Calcula nembers, calculat beams for stability	to working st llar Ratio and Fac ety factors, Chara einforced and ov ation of deflecti ion of crack wid 7.	ress method, ctor of Safety acteristic load er reinforced on of singly dth of singly
Module-2				
Limit State Analysis of Beams: Analysis of singly reinforced, doubl	y reinforced and flanged	d beams for flexur	e and shear.	
Module-3				
Limit State Design of Beams: Desidesign for combined bending, shear	ign of singly and doubly and torsion as per IS-45	v reinforced beams 56.	s, Design of flang	ed beams,
Module-4				
Limit State Design of Slabs and S simply supported and one way cont Design of dog legged and open well Module-5	tairs: Introduction to on inuous slab. Design of t staircases. Importance	ne way and two w wo way slabs for o of bond, anchorag	ay slabs, Design different boundar ge length and lap	of cantilever, y conditions. length.
Limit State Deign of Columns or	d Footings: Analysis	and design of she	rt avially loaded	PC column
Design of columns with uniaxial Rectangular and square column foo	and biaxial moments, tings with axial load an	Design concepts d also for axial loa	s of the footings ad & moment.	s. Design of
 Course outcomes: After studying t Understand the design philosop Solve engineering problems of I Demonstrate the procedural known footings. Owns professional and ethical r 	his course, students will hy and principles. C elements subjected t wledge in designs of RC esponsibility.	be able to: o flexure, shear ar C structural eleme	nd torsion. nts such as slabs,	columns and
Question namer nattern:	esponsionity.			
 The question paper pattern: The question paper will have Each full question will be for There will be two full question Each full question will have s The students will have to answ The designs are as per IS-456 at 	ten full questions carryin 20 marks. ns (with a maximum of ub- question covering al ver five full questions, s and SP (16) relevant char	ng equal marks. four sub- question Il the topics under electing one full q ts to be provided i	s) from each mod a module. uestion from each n the question part	łule. h module.
		is to be provided i		
Textbooks:1. Unnikrishnan Pillai and Devdas2. Subramanian, "Design of Conce3. H J Shah, "Reinforced Concre	Menon, " Reinforced (crete Structures" , Oxfe te Vol. 1 (Elementarv l	Concrete Design' ord university Pres Reinforced Conci	', McGraw Hill,] ss r ete)" , Charotar]	New Delhi Publishing
House Pvt. Ltd.	<pre></pre>		, ,	0

Reference Books:

- 1. P C Varghese, "Limit State design of reinforced concrete", PHI, New Delhi.
- 2. W H Mosley, R Husle, J H Bungey, "Reinforced Concrete Design", MacMillan Education, Palgrave publishers.
- 3. Kong and Evans, "Reinforced and Pre-Stressed Concrete", Springer Publications.
- 4. A W Beeby and Narayan R S, "Introduction to Design for Civil Engineers", CRC Press.
- 5. Robert Park and Thomas Paulay, "Reinforced Concrete Structures", John Wiley & Sons, Inc.

	B. E. CIVIL ENGINE	ERING	
Choice Based Credit	System (CBCS)and Out	come Based Education (OBE)	
	SEMESTER - V	V	
MUNIC	IPAL WASTEWATER	ENGINEERING	
Course Code	18CV55	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives: This course	se will enable students to	;	
1. Understand the various water demands	s and population forecasting	ng methods.	
2. Understand and design different unit o	perations and unit process	s in involved in wastewater treatme	ent process
3.Understand the concept and design o	f various physicochemica	al treatment units	
4. Understand the concept and design o	f various biological treati	ment units	
5. Understand the concept of various adv	ance waste water and low	v cost treatment processes for rural	areas.
Module-1			
Introduction: Need for sanitation, meth	ods of sewage disposal, t	types of sewerage systems, dry we	eather flow, wet
weather flow, factors effecting dry and	wet weather flow on desig	gn of sewerage system, estimatior	n of storm water
flow, time of concentration flow, numer	icals.		
Sewer appurtenances: Manholes, catch	h basins, oil and grease tra	aps. P, Q and S traps. Material of s	ewers, shape of
sewers, laying and testing of sewers, ven	tilation of sewers basic pr	inciples of house drainage.	_
Module-2			
Design of sewers: Hydraulic formula	to determine velocity a	nd discharge. Self cleansing and	d non scouring
velocity. Design of hydraulic elements f	or circular sewers for full	flow and half flow conditions.	
Waste water characteristics: samplin	g, significance and tech	niques, physical, chemical and b	piological
characteristics, flow diagram for munici	pal waste water		
Treatment unit operations and process. I	Estimation of BOD. React	tion kinetics (zero order, 1 st order a	and 2 nd order).
Module-3			
Treatment of municipal waste water:	Screens: types, disposal. (Grit chamber, oil and grease remov	al. primary and
secondary settling tanks.			
Disposal of effluents: Dilution, self-pu	rification phenomenon,	oxygen sag curve, zones of purif	ication, sewage
farming, sewage sickness, numerical pro-	blems on disposal of effl	uents. Streeter-Phelps equation.	

Module-4

Biological Treatment Process: Suspended growth system - conventional activated sludge process and its modifications. Attached growth system – trickling filter, bio-towers and rotating biological contactors. Principle of stabilization ponds, oxidation ditch, Sludge digesters(aerobic and anaerobic), Equalization., thickeners and drying beds.

Module-5

Advanced Wastewater Treatment: Need and technologies used. Nitrification and Denitrification Processes, Phosphorous removal. Advance oxidation processes (AOPs), Electro coagulation.

Rural sanitation: Low cost treatment process: Working principal and design of septic tanks for small community in rural and urban areas, two-pit latrines, eco-toilet and soak pits.

Course outcomes: After studying this course, the students will be able to:

1. Select the appropriate sewer appurtenances and materials in sewer network.

2. Design the sewers network and understand the self purification process in flowing water.

3.Deisgn the varies physic- chemical treatment units

- 4. Design the various biological treatment units
- 5. Design various AOPs and low cost treatment units.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks

- 1. Howard S. Peavy, Donald R. Rowe, George T, "Environmental Engineering" Tata McGraw Hill, New York, Indian Edition, 2013
- 2. B C Punmia, "Environmental Engineering vol-II", Laxmi Publications 2nd, 2016
- 3. Karia G.L., and Christian R.A, "Wastewater Treatment Concepts and Design Approach", Prentice Hall of India Pvt. Ltd., New Delhi. 3^{rd,} Edition, 2017
- 4. S.K.Garg, "Environmental Engineering vol-II, Water supply Engineering", Khanna Publishers, New Delhi, 28th edition and 2017

Reference Books

- 1. CPHEEO manual on sewage treatment, Ministry of Urban Development, Government of India, New Delhi,1999
- 2. Mark.J Hammer, "Water & Waste Water Technology" John Wiley & Sons Inc., New York, 2008
- 3. Benefield R.D., and Randal C.W, "Biological Process Design for Wastewater Treatment", Prentice Hall, Englewood Chiffs, New Jersey 2012
- 4. Metcalf and Eddy Inc, "Wastewater Engineering Treatment and Reuse", Publishing Co. Ltd., New Delhi, 4th Edition, 2009.

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

CIE Marks	40
SEE Marks	60
Exam Hours	03
	SEE Marks Exam Hours

Course Learning Objectives: This course will enable students to

- 1. Understand advantages and disadvantages of steel structures, steel code provisions, and plastic behaviour of structural steel.
- 2. Learn Bolted connections and Welded connections.
- 3. Design of compression members, built-up columns and columns splices.
- 4. Design of tension members, simple slab base and gusseted base.
- 5. Design of laterally supported and un-supported steel beams.

Module -1

Introduction: Advantages and Disadvantages of Steel Structures, Limit state method Limit State of Strength, Structural Stability, Serviceability Limit states, Failure Criteria of steel, Design Consideration, Loading and load combinations, IS code provisions, Specification and Section classification.

Plastic Behavior of Structural Steel: Introduction, Plastic theory, Plastic Hinge Concept, Plastic collapse load, load factor, Shape factor, Theorem of plastic collapse, Methods of Plastic analysis, Plastic analysis of Continuous Beams.

Module -2

Bolted Connections: Introduction, Types of Bolts, Behavior of bolted joints, Design of High Strength friction Grip (HSFG) bolts, Design of Simple bolted Connections (Lap and Butt joints) and bracket connections.

Welded Connections: Introduction, Types and properties of welds, Effective areas of welds, Weld Defects, Simple welded joints for truss member and bracket connections, Advantages and Disadvantages of Bolted and Welded Connections.

Module -3

Design of Compression Members: Introduction, Failure modes, Behavior of compression members, Sections used for compression members, Effective length of compression members, Design of compression members and built up Compression members, Design of Laced and Battened Systems.

Module -4

Design of Tension Members: Introduction, Types of Tension members, Slenderness ratio, Modes of Failure, Factors affecting the strength of tension members, Design of Tension members and Lug angles, Splices, Gussets.

Design of Column Bases: Design of Simple Slab Base and Gusseted Base.

Module -5

Design of Beams: Introduction, Beam types, Lateral Stability of beams, factors affecting lateral stability, Behavior of Beams in Bending, Design strength of laterally supported beams in Bending, Design of Laterally unsupported Beams [No Numerical Problems], Shear Strength of Steel Beams. Beam to Beam Connections, Beam to Column Connection and Column Splices [No Numerical Problems].

Beam to Beam Connections, Beam to Column Connection and Column Sphees [10 Hamerica

Course Outcomes: After studying this course, students will be able to:

- 1. Possess knowledge of Steel Structures Advantages and Disadvantages of Steel structures, steel code provisions and plastic behaviour of structural steel.
- 2. Understand the Concept of Bolted and Welded connections.
- 3. Understand the Concept of Design of compression members, built-up columns and columns splices.
- 4. Understand the Concept of Design of tension members, simple slab base and gusseted base.
- 5. Understand the Concept of Design of laterally supported and un-supported steel beams.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. N Subramanian., "Design of Steel Structures" (2016), Oxford University Press, New Delhi.
- 2. Duggal S K., "Limit State Method of Design of Steel Structures", Tata McGraw Hill, New Delhi.

Reference Books:

- 1. Dayarathnam P, "Design of Steel Structures", Scientific International Pvt. Ltd.
- 2. Kazim S M A and Jindal R S, "Design of Steel Structures", Prentice Hall of India, New Delhi.
- 3. IS 800-2007: General Construction in Steel Code Practice (Third revision), Bureau of Indian Standards, New Delhi.

B. E. CIVIL ENGINEERING				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTER - VII				
DESIGN OF RO	LC AND SIEEL SIKU	CIURES	40	
Teaching Hours/Week(L:T:P)	(3:0:0)	SEE Marks	60	
Credits	(3.0.0)	Evam Hours	00	
	05	LAdin Hours	05	
 Course Learning Objectives: This course wi Provide basic knowledge in the areas of structures Identify, formulate and solve engineering p 	Il enable students to f limit state method and problems in RC and Steel	d concept of design of I Structures	RC and Steel	
 Give procedural knowledge to design a sy RC Structures like Retaining wall, Footin Truss, Plate Girder and Gantry Girder. Imbibe the culture of professional and analysis design of RC and Steel Structure 	vstem, component or pro ng, Water tanks, Portal ethical responsibilities	cess as per needs and spe Frames and Steel Structu by following codal prov	ecifications of tres like Roof visions in the	
 Provide factual knowledge on analysis and succeed in competitive examinations. 	nd design of RC Structu	aral elements, who can p	articipate and	
Module -1				
Retaining Walls: Design of cantilever Retainin Water Tanks: Design of circular water tan rectangular water tanks resting on ground. As Design of portal frames with fixed and hinged Module -2	g wall and counter fort realisting on ground (per IS: 3370 (Part IV). based supports.	etaining wall. (Rigid and Flexible base	e). Design of	
Roof Truss: Design of roof truss for different of Plate Girder: Design of welded plate girde checks Gantry Girder: Design of gantry girder with a Course Outcomes: After studying this course	cases of loading, forces i r with intermediate stif all necessary checks. , students will be able to:	n members to given. fener, bearing stiffener a	nd necessary	
 Students will acquire the basic knowledge Students will have the ability to follow de structurally safe RC and Steel members. 	in design of RCC and Sto esign procedures as per	eel Structures. codal provisions and skil	ls to arrive at	
 Question Paper Pattern: Two questions shall be asked from each question, if necessary. One full question should be answered from Each question carries 50 marks. Code books - IS 456, IS 800, IS 3370 (module. There can be m n each module. (Part IV), SP-16, SP (6)	naximum of three subdivi) – Steel Tables, shall be	sions in each e referred for	
designing. The same will be provided dur Textbooks:	ing examination.			
 N Krishna Raju, "Structural Design and I Subramanian N, "Design of Steel Structures" K S Duggal, "Design of Steel Structures" 	Drawing of Reinforced res" , Oxford university I ', Tata McGraw Hill, Ne ⁴	Concrete and Steel" , Un Press, New Delhi w Delhi	iversity Press	
 Keierence Books: Charles E Salman, Johnson & Mathas, "Stellar Nether Cot, et.al, "Behavior and Design of Rei P C Verghese, "Limit State Design of Rei S N Sinha, "Reinforced Concrete Design 	eel Structure Design an of Steel Structures to EC inforced Concrete", PH ", McGraw Hill Publicat	d Behavior" , Pearson Pul C -III" , CRC Press I Publications, New Delhi ion	blications	

DATA STRUCTURES AND APPLICATIONS				
(Effective from the academic year 2018 - 2019)				
	SEMESTER – III		40	
Course Code	180532	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
	CREDITS –4			
Course Learning Objectives: This cours	e (18CS32) will enable s	students to:		
 Explain fundamentals of data stru solving. 	ctures and their applicat	ions essential for progra	amming/problem	
• Illustrate linear representation of a	lata structures: Stack, Q	ueues, Lists, Trees and	Graphs.	
• Demonstrate sorting and searching	g algorithms.			
• Find suitable data structure during	application development	nt/Problem Solving.		
Module 1		0	Contact	
			Hours	
Introduction: Data Structures, Classifications, Review of Arrays, Structures	ations (Primitive & Nor Self-Referential Struct	Primitive), Data structures, and Unions, Poir	ture 10	
and Dynamic Memory Allocation Function	ons. Representation of	Linear Arrays in Mem	iorv.	
Dynamically allocated arrays.				
Array Operations: Traversing, inserting, Arrays Polynomials and Sparse Matrices	deleting, searching, and	d sorting. Multidimensi	onal	
Strings: Basic Terminology Storing	Operations and Patte	ern Matching algorith	nms	
Programming Examples	operations and rate	ern matering argerra	inio.	
Textbook 1. Chanter 1. 1.2. Chanter 2.	2.2 - 2.7 Text Textbook	2 · Chanter 1 · 1 1 - 1	4	
Chapter 3: $31 - 33$ 35 37 Chapter 4	· 41.49 414 Referen	nce 3. Chanter 1. 14	.,	
RBT: L1, L2, L3				
Module 2				
Stacks: Definition, Stack Operations, Arr	ay Representation of Sta	acks, Stacks using Dyna	umic 10	
Arrays, Stack Applications: Polish notation	on, Infix to postfix conve	ersion, evaluation of pos	stfix	
expression.				
Recursion - Factorial, GCD, Fibonacci	Sequence, Tower of H	anoi, Ackerman's func	tion.	
Oueues: Definition. Array Representation	on. Oueue Operations.	Circular Oueues, Circ	cular	
queues using Dynamic arrays. Dequeue	s. Priority Oueues. A	Mazing Problem. Mul	tiple	
Stacks and Oueues. Programming Exampl	es.	8	, L	
Textbook 1: Chanter 3: 31-37 Textbook 2: Chanter 6: 61-63 65 67-610 612 613				
RBT: L1. L2. L3		e, ou, ou oiro, oir, o		
Module 3				
Linked Lists: Definition, Representation	n of linked lists in Me	emory. Memory allocat	tion: 10	
Garbage Collection. Linked list operation	ns: Traversing, Searchir	ng. Insertion, and Dele	tion.	
Doubly Linked lists. Circular linked lists.	and header linked lists.	Linked Stacks and Oue	ues.	
Applications of Linked lists – Polynomials, Sparse matrix representation, Programming				
Fyamples				
Textbook 1: Ch apter $4:4.1 - 4.6, 4.8$	Fextbook 2: Ch anter 5	: 5.1 - 5.10.		
RBT: L1. L2. L3	extroom 2. On upter e			
Module 4				
Trees: Terminology Binary Trees	Properties of Binary	trees Array and lin		
=======		uces. Anav and m	uked 10	
Representation of Binary Trees Binary	Tree Traversals - Ind	order, postorder preo	nked 10 der:	
Representation of Binary Trees, Binary Additional Binary tree operations. Thread	Tree Traversals - Ind Ind binary trees Binary	order, postorder, preor Search Trees – Definit	nked 10 rder; tion	
Representation of Binary Trees, Binary Additional Binary tree operations. Thread Insertion, Deletion, Traversal Searching	Tree Traversals - Ind led binary trees, Binary Application of Trees	order, postorder, preor Search Trees – Defini -Evaluation of Express	nked 10 rder; tion, sion.	

Textbook 1: Chapter 5: 5.1 –5.5, 5.7; Textbook 2: Chapter 7: 7.1 – 7.9		
KB1: L1, L2, L3 Modulo 5		
Craphe: Definitions Terminologies Matrix and Adjacency List Penrosentation Of Graphs	10	
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First	10	
Search		
Sorting and Searching: Insertion Sort Radix sort Address Calculation Sort		
Hashing: Hash Table organizations Hashing Functions Static and Dynamic Hashing		
Files and Their Organization: Data Hierarchy File Attributes Text Files and Binary Files		
Basic File Operations, File Organizations and Indexing		
Textbook 1: Chapter 6 : 6.1 – 6.2. Chapter 7:7.2. Chapter 8 : 8.1-8.3		
Textbook 2: Chapter 8 : 8.1 – 8.7. Chapter 9 : 9.1-9.3. 9.7. 9.9		
Reference 2: Chapter 16 : 16.1 - 16.7		
RBT: L1, L2, L3		
Course Outcomes: The student will be able to :		
Use different types of data structures, operations and algorithms		
• Apply searching and sorting operations on files		
• Use stack, Queue, Lists, Trees and Graphs in problem solving		
• Implement all data structures in a high-level language for problem solving.		
Question Paper Pattern:		
• The question paper will have ten questions.		
• Each full Question consisting of 20 marks		
• There will be 2 full questions (with a maximum of four sub questions) from each module.		
• Each full question will have sub questions covering all the topics under a module.		
• The students will have to answer 5 full questions, selecting one full question from each module.		
Textbooks:		
1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2 nd Ed, University	sities Press,	
2014.		
2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1 st Ed, McGraw Hill,	2014.	
Reference Books:		
1. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2 nd Ed, Cengag	;e	
Learning,2014.		
2. Reema Thareja, Data Structures using C, 3 ^{ra} Ed, Oxford press, 2012.		
 Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with App 2nd Ed, McGraw Hill, 2013 	lications,	
4. A M Tenenbaum, Data Structures using C, PHI, 1989		
5. Robert Kruse, Data Structures and Program Design in C, 2 nd Ed, PHI, 1996.		

SOFTWARE ENGINEERING				
(Effective from the academic year 2018 -2019)				
Course Code	18CS35	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
	CREDITS -	-3		
Course Learning Objectives: This course	e (18CS35) will	enable students to:		
Course Learning Objectives: This course (18CS35) will enable students to: • Outline software engineering principles and activities involved in building large software programs.Identify ethical and professional issues and explain why they are of concern to software engineers. • Explain the fundamentals of object oriented concepts • Describe the process of requirements gathering, requirements classification, requirements specification and requirements validation. Differentiate system models, use UML diagrams and apply design patterns. • Discuss the distinctions between validation testing and defect testing. • Recognize the importance of software maintenance and describe the intricacies involved in software evolution.Apply estimation techniques, schedule project activities and compute pricing. • Identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved. Module 1 Contact Hours Introduction: Software Crisis, Need for Software Engineering. Professional Software Development, Software Engineering Ethics. Case Studies. 08 Software Processes: Models: Waterfall Model (Sec 2.1.1), Incremental Model (Sec 2.1.2) and Spiral Model (Sec 2.1.3). Process activities. 08 Requirements Engineering: Requirements Engineering Processes (Chap 4). Requirements Engineering: Requirements Engineering Processes (Chap 4). Requirements Elicitation and Analysis (Sec 4.5). Functional and non-functional requirements (Sec 4.1). The				
software Requirements Document (Se Requirements validation (Sec 4.6) Requirements	c 4.2). Requii ements Managei	rements Specification (Sec ment (Sec 4.7)	e 4.3).	
Requirements vandation (See 4.0). Requirements Wanagement (See 4.7).				
Module 2				
What is Object orientation? What is OO development? OO Themes; Evidence for usefulness of OO development; OO modelling history. Modelling as Design technique: Modelling; abstraction; The Three models. Introduction, Modelling Concepts and Class Modelling: What is Object orientation? What is OO development? OO Themes; Evidence for usefulness of OO development; OO modelling history. Modelling as Design technique: Modelling; abstraction; The Three models. Class Modelling: Object and Class Concept; Link and associations concepts; Generalization and Inheritance; A sample class model; Navigation of class models; Textbook 2: Ch 1,2,3.			fulness 08 delling; lelling: fulness delling; nk and tion of	8
RBT: L1, L2 L3				
Module 3				
System Models: Context models (Sec 5. (Sec 5.3). Behavioral models (Sec 5.4). M Design and Implementation: Introductio Object-oriented design using the UML (S issues (Sec 7.3). Open source developmen RBT: L1, L2, L3	1). Interaction r odel-driven engi on to RUP (Sec ec 7.1). Design t (Sec 7.4).	nodels (Sec 5.2). Structural ineering (Sec 5.5). 2.4), Design Principles (Cl patterns (Sec 7.2). Impleme	models 08 hap 7). ntation	8

Module 4		
Software Testing: Development testing (Sec 8.1), Test-driven development (Sec 8.2),	08	
Release testing (Sec 8.3), User testing (Sec 8.4). Test Automation (Page no 212).		
Software Evolution: Evolution processes (Sec 9.1). Program evolution dynamics (Sec 9.2).		
Software maintenance (Sec 9.3). Legacy system management (Sec 9.4).		
RBT: L1, L2, L3		
Module 5		
Project Planning: Software pricing (Sec 23.1). Plan-driven development (Sec 23.2). Project	08	
scheduling (Sec 23.3): Estimation techniques (Sec 23.5). Quality management: Software		
quality (Sec 24.1). Reviews and inspections (Sec 24.3). Software measurement and metrics		
(Sec 24.4). Software standards (Sec 24.2)		
RBT: L1, L2, L3		
Course Outcomes: The student will be able to :		
• Design a software system, component, or process to meet desired needs within	n realistic	
constraints.		
• Assess professional and ethical responsibility		
• Function on multi-disciplinary teams		
• Use the techniques, skills, and modern engineering tools necessary for engineering prac	tice	
• Analyze, design, implement, verify, validate, implement, apply, and maintain software systems o		
parts of software systems		
Question Paper Pattern:		
• The question paper will have ten questions.		
• Each full Question consisting of 20 marks		
• There will be 2 full questions (with a maximum of four sub questions) from each module.		
• Each full question will have sub questions covering all the topics under a module.		
• The students will have to answer 5 full questions, selecting one full question from each	module.	
Textbooks:		
1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Lis	sted topics	
only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)	nd	
2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2 nd Edition		
Pearson Education,2005.		
Reference Books:	. ~	
 Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata M Hill. 	AcGraw	
2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India		

DESIGN AND ANALYSIS OF ALGORITHMS				
(Effective from the academic year 2018 -2019) SEMESTER – IV				
Course Code	18CS42	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
	CREDITS –4			
Course Learning Objectives: This course	e (18CS42) will enable s	tudents to:		
Explain various computational pro	blem solving techniques	S.		
• Apply appropriate method to solve	e a given problem.			
• Describe various methods of algor	ithm analysis.			
Module 1			Contact Hours	
Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4). Important Problem Types: Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4).			ysis 10 .3). and ms ing res:	
Module 2				
Divide and Conquer : General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach : Topological Sort. (T1:5.3). RBT: L1, L2, L3		and 10 sort s of		
Module 3				
Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4). Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4). RBT: L1, L2, L3			Job 10 m's ra's -4).	
Module 4				
Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8). RBT: L1, L2, L3		.2). 10 hm, ord).		
Module 5				
Backtracking: General method (T2:7.1 problem (T1:12.1), Graph coloring (T2:7 Bound: Assignment Problem, Travelling problem (T2:8.2, T1:12.2): LC Programmand Bound solution (T2:8.2). NP-Complete NP-Complete (T2:8.2).), N-Queens problem (4), Hamiltonian cycles Sales Person problem ne and Bound solution ete and NP-Hard prob	T1:12.1), Sum of sub (T2:7.5). Programme : (T1:12.2), 0/1 Knaps (T2:8.2), FIFO Program lems: Basic concepts, m	sets 10 and ack nme on-	

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).		
RBT: L1, L2, L3		
Course Outcomes: The student will be able to :		
• Describe computational solution to well known problems like searching, sorting etc.		
• Estimate the computational complexity of different algorithms.		
• Devise an algorithm using appropriate design strategies for problem solving.		
Question Paper Pattern:		
• The question paper will have ten questions.		
Each full Question consisting of 20 marks		
• There will be 2 full questions (with a maximum of four sub questions) from each module.		
• Each full question will have sub questions covering all the topics under a module.		
• The students will have to answer 5 full questions, selecting one full question from each module.		
Textbooks:		
1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.		
Pearson.		
2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014,		
Universities Press		
Reference Books:		
1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford		
Stein, 3rd Edition, PHI.		
2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).		

MICROCONTROLLER AND EMBEDDED SYSTEMS				
(Effective from the academic year 2018 - 2019)				
	SEMESTER	<u>– IV</u>		
Course Code	18CS44	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
	CREDITS -	-3		
Course Learning Objectives: This course	e (18CS44) will	enable students to:		
• Understand the fundamentals of A	RM based syste	ms, basic hardware componen	its, selec	ction
methods and attributes of an embe	edded system.			
• Program ARM controller using th	e various instruc	tions		
• Identify the applicability of the en	mbedded system			
Comprehend the real time operation	ng system used f	for the embedded system		
Module 1				Contact
				Hours
Microprocessors versus Microcontrollers,	ARM Embedde	d Systems: The RISC design		08
philosophy, The ARM Design Philosophy	, Embedded Sys	tem Hardware, Embedded Sys	stem	
Software.				
ARM Processor Fundamentals: Registers,	Current Program	n Status Register, Pipeline,		
Exceptions, Interrupts, and the Vector Tab	ole, Core Extens	ions		
Toyt book 1. Chapter 1 11 to 14 Cha	nton 2 21 to 2	5		
DRT. I 1 I 2	ipter 2 - 2.1 to 2	.5		
ND1. L1, L2 Modulo 2				
Introduction to the ARM Instruction Se	at • Data Process	ing Instructions Programme		08
Instructions, Software Interrupt Instructions, Program Status Degister Instructions				00
Instructions, Software Interrupt Instructions, Program Status Register Instructions,				
Coprocessor Instructions, Loading Constants				
ARM programming using Assembly lar	nguage: Writing	Assembly code, Profiling and	l	
cycle counting, instruction scheduling, Re	gister Allocation	n, Conditional Execution, Loop	ping	
Constructs	C			
Text book 1: Chapter 3:Sections 3.1 to	3.6 (Excluding	g 3.5.2), Chapter 6(Sections 6	6.1 to	
6.6)				
RBT: L1, L2				
Module 3				00
Embedded System Components: Embed	Ided Vs General	computing system, History of		08
embedded systems, Classification of Embe	edded systems, I	Major applications areas of		
embedded systems, purpose of embedded	systems			
Core of an Embedded System including a	ll types of proce	ssor/controller Memory Sens	sors	
Actuators IED 7 segment IED display	stepper motor K	evboard Push button switch	5015,	
Communication Interface (onboard and ex	stepper motor, R	nbaddad firmwara. Other system	om	
components	ternar types), El	nbedded minware, Other syst		
components.				
Text book 2:Chapter 1(Sections 1.2 to 1	.6),Chapter 2(S	ections 2.1 to 2.6)		
RBT: L1, L2	· • ·			
Module 4				
Embedded System Design Concepts: Ch	naracteristics and	Quality Attributes of Embedd	ded	08
Systems, Operational quality attributes .no	on-operational a	ality attributes, Embedded		
Systems-Application and Domain specific, Hardware Software Co-Design and Program				
---	----------------			
Modelling, embedded firmware design and development				
Text book 2: Chapter-3, Chapter-4, Chapter-7 (Sections 7.1, 7.2 only), Chapter-9				
(Sections 9.1, 9.2, 9.3.1, 9.3.2 only)				
KB1: L1, L2				
	<u> </u>			
RIOS and IDE for Embedded System Design: Operating System basics, Types o	08			
operating systems, Task, process and threads (Only POSIX Threads with an example	5			
program), Thread preemption, Multiprocessing and Multitasking, Task Communication				
(without any program), Task synchronization issues – Racing and Deadlock, Concept o	ī			
Binary and counting semaphores (Mutex example without any program), How to choose an	t 🔤			
RTOS, Integration and testing of Embedded hardware and firmware, Embedded system	1			
Development Environment - Block diagram (excluding Keil), Disassembler/decompiler	,			
simulator, emulator and debugging techniques, target hardware debugging, boundary scan.				
Tart back 2. Chapter 10 (Sections 10.1, 10.2, 10.2, 10.4, 10.7, 10.9.1.1, 10.9.1.2, 10.9.2.2)				
10.10 only) Chapter 12 Chapter 13 (block diagram before 13.1, 13.3, 13.4, 13.5, 13.4)	,			
(10.10 only), Chapter 12, Chapter 15 (block thagram before 15.1, 15.5, 15.4, 15.5, 15.4)	,			
Course Outcomes: The student will be able to :				
Describe the architectural features and instructions of ARM microcontroller				
 Apply the knowledge gained for Programming ARM for different applications 				
 Interface external devices and I/O with ARM microcontroller 				
• Interpret the basic hardware components and their selection method based on the c	haracteristics			
and attributes of an embedded system.				
• Develop the hardware /software co-design and firmware design approaches.				
• Demonstrate the need of real time operating system for embedded system application	S			
Ouestion Paper Pattern:				
• The question paper will have ten questions.				
• Each full Ouestion consisting of 20 marks				
• There will be 2 full questions (with a maximum of four sub questions) from each mo	lule.			
• Each full question will have sub questions covering all the topics under a module.				
• The students will have to answer 5 full questions, selecting one full question from ea	ch module.			
Textbooks:				
1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers gu	de. Elsevier.			
Morgan Kaufman publishers, 2008.	,,			
2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Pri	vate Limited,			
2^{nd} Edition.				
Reference Books:				
1. RaghunandanG.H, Microcontroller (ARM) and Embedded System, Cenga	ge learning			
Publication,2019	C			
2. The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 200	15.			
3. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.				
4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.				

COMPU	TER NETWOR	KS AND SECURITY		
(Effective from the academic year 2018 -2019) SEMESTER – V				
Course Code	18CS52	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
	CREDI	<u>IS -4</u>		
Course Learning Objectives: This course	e (18CS52) will e	enable students to:		
• Demonstration of application laye	er protocols			
• Discuss transport layer services an	nd understand UL	OP and TCP protocols		
• Explain routers, IP and Routing A	Algorithms in net	work layer		
• Disseminate the Wireless and Mo	bile Networks co	vering IEEE 802.11 Standa	ard	
Illustrate concepts of Multimedia	Networking, Sec	urity and Network Manage	ment	
Module 1	1 A 1' /' X	T, 1 A 1', A 1'		Contact Hours
Application Layer: Principles of Networ	k Applications: N	Network Application Archi	tectures,	10
Processes Communicating, Transport Ser	vices Available to	o Applications, Transport	Services	
Provided by the Internet, Application-La	iyer Protocols. I	he Web and HTTP: Over	view of	
HTTP, Non-persistent and Persistent C	onnections, HTT	P Message Format, Use	r-Server	
Interaction: Cookies, Web Caching, The C	Conditional GET	, File Transfer: FTP Com	nands &	
Replies, Electronic Mail in the Internet	: SMTP, Compa	rison with HITP, Mail I	Message	
Format, Mail Access Protocols, DNS; The	e Internet's Direct	tory Service: Services Prov	vided by	
DNS, Overview of How DNS Worl	ks, DNS Recor	as and Messages, Peer	-to-Peer	
Applications: P2P File Distribution, Distributed Hash Tables, Socket Programming: creating				
Network Applications: Socket Programming with UDP, Socket Programming with TCP.			Ρ.	
T1: Chap 2 RBT: L1, L2, L3				
Module 2				
Transport Layer : Introduction and	Transport-Layer	Services: Relationship	Between	10
Transport and Network Layers, Over	view of the T	ransport Layer in the	Internet,	
Multiplexing and Demultiplexing: Conne	ctionless Transpo	ort: UDP,UDP Segment S	tructure,	
UDP Checksum, Principles of Reliable	Data Transfer: E	Building a Reliable Data '	Transfer	
Protocol, Pipelined Reliable Data Tra	ansfer Protocols	, Go-Back-N, Selective	repeat,	
Connection-Oriented Transport TCP: The	TCP Connection	n, TCP Segment Structure,	Round-	
Trip Time Estimation and Timeout, Relia	able Data Transfe	er, Flow Control, TCP Con	nnection	
Management, Principles of Congestion C	Control: The Cau	uses and the Costs of Cor	igestion,	
Approaches to Congestion Control, Net	twork-assisted c	ongestion-control example	e, ATM	
ABR Congestion control, TCP Congestion	n Control: Fairnes	SS.		
T1: Chap 3				
RB1 : L1, L2, L3				
The Network layer What's Inside a	Doutor? Input	t Processing Switching	Output	10
Processing Where Doos Quaying Quart	Routing control	nlang IDv6 & Brief fores	into ID	10
Security Pouting Algorithms: The Link C	State (IS) Doutin	g Algorithm The Distance	Vector	
(DV) Pouting Algorithm Historshies D	outing Routing	n the Internet Intro AS De	- v color	
the Internet: BID Intro AS Douting in the	Internet: OSDE	In the Internet, Inita-AS K(Inter/AS Routing: RCD D	roadcast	
Routing Algorithms and Multicost	memer. Osrr,	inter/AS Koutilig. DOP, D	loaucast	
T1. Chap 4: 4 3 4 7				
RBT: L1, L2, L3				

Module 4	
Network Security: Overview of Network Security: Elements of Network Security,	10
Classification of Network Attacks ,Security Methods ,Symmetric-Key Cryptography :Data	
Encryption Standard (DES), Advanced Encryption Standard (AES), Public-Key	
Cryptography :RSA Algorithm ,Diffie-Hellman Key-Exchange Protocol , Authentication	
:Hash Function, Secure Hash Algorithm (SHA), Digital Signatures, Firewalls and Packet	
Filtering , Packet Filtering , Proxy Server .	
Textbook2: Chapter 10	
RBT: L1, L2, L3	
Module 5	
Multimedia Networking: Properties of video, properties of Audio, Types of multimedia	10
Network Applications, Streaming stored video: UDP Streaming, HTTP Streaming, Adaptive	
streaming and DASH, content distribution Networks	
Voice-over-IP :Limitations of the Best-Effort IP Service .Removing Jitter at the Receiver for	
Audio Recovering from Packet Loss Protocols for Real-Time Conversational Applications.	
RTP. SIP	
Textbook11: Chap 7	
RBT: L1. L2. L3	
Course Outcomes: The student will be able to :	
• Explain principles of application layer protocols	
 Recognize transport layer services and infer UDP and TCP protocols 	
 Classify routers IP and Routing Algorithms in network layer 	
 Understand the Wireless and Mobile Networks covering IEEE 802 11 Standard 	
 Describe Multimedia Networking and Network Management 	
Ouestion Paper Pattern:	
The question paper will have ten questions	
 Fach full Question consisting of 20 marks 	
 There will be 2 full questions (with a maximum of four sub questions) from each modulated and the sub questions (with a maximum of four sub questions). 	le
 Fach full question will have sub questions covering all the topics under a module 	ne.
 Each run question will have to answer 5 full questions selecting one full question from each 	module
Textbooks:	module.
1. James F Kurose and Keith W Ross, Computer Networking, A Top-Down Approach, Si	xth edition.
Pearson.2017.	,
2. Nader F Mir, Computer and Communication Networks, 2 nd Edition, Pearson, 2014.	
Reference Books:	
1. Behrouz A Forouzan, Data and Communications and Networking, Fifth Edition, McGr	aw Hill, Indian
Edition	
2. Larry L Peterson and Brusce S Davie, Computer Networks, fifth edition, ELSEVIER	
3. Andrew S Tanenbaum, Computer Networks, fifth edition, Pearson	
4. Mayank Dave, Computer Networks, Second edition, Cengage Learning	

DATABASE MANAGEMENT SYSTEM			
(Effective from the academic year 2018 -2019) SEMESTER – V			
Course Code	18CS53	CIE Marks	40
Number of Contact Hours/Week	3:2:0	SEE Marks	60
Total Number of Contact Hours	50	Exam Hours	03
	CREDITS –4		
Course Learning Objectives: This course	e (18CS53) will enable s	students to:	
• Provide a strong foundation in d	atabase concepts, techno	ology, and practice.	
• Practice SQL programming thro	ugh a variety of databas	e problems.	
• Demonstrate the use of concurre	ency and transactions in	database	
• Design and build database applied	cations for real world pr	oblems.	
Module 1	A		Contact Hours
Introduction to Databases: Introduction of using the DBMS approach, History Languages and Architectures: Data I architecture and data independence, databa environment. Conceptual Data Modellin Entity sets, attributes, roles, and structu examples, Specialization and Generalization Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 to RBT: L1, L2, L3 Module 2	, Characteristics of data of database application Models, Schemas, and ase languages, and interf g using Entities and F ral constraints, Weak o on. to 3.10	base approach, Advanta s. Overview of Datab Instances. Three sche faces, The Database Sys Relationships: Entity ty entity types, ER diagra	Hours ges 10 ase - ema - tem - pess, - ms, -
Relational Madel: Delational Madel Con	ante Deletional Made	1 Constraints and relativ	mal 10
database schemas, Update operational Model Col database schemas, Update operations, tra Relational Algebra: Unary and Binary re (aggregate, grouping, etc.) Examples of Q Design into a Logical Design: Relational SQL: SQL data definition and data types, SQL, INSERT, DELETE, and UPDATE s Textbook 1: Ch4.1 to 4.5, 5.1 to 5.3, 6.1 to RBT: L1, L2, L3 Modulo 3	ansactions, and dealing elational operations, add pueries in relational alge Database Design using , specifying constraints tatements in SQL, Addi to 6.5, 8.1; Textbook 2:	with constraints and related itional relational operational operational relational operational bra. Mapping Concept ER-to-Relational mapp in SQL, retrieval querie tional features of SQL. 3.5	ing.
Module 3		0.10.1	10
SQL : Advances Queries: More complet assertions and action triggers, Views in S Application Development: Accessing JDBC, JDBC classes and interfaces, SQ Bookshop. Internet Applications: The the layer, The Middle Tier Textbook 1: Ch7.1 to 7.4; Textbook 2: 6 RBT: L1, L2, L3	ex SQL retrieval queries QL, Schema change sta databases from applica QLJ, Stored procedures aree-Tier application are 1.1 to 6.6, 7.5 to 7.7.	s, Specifying constraint atements in SQL. Datab ations, An introduction , Case study: The inte chitecture, The presenta	s as 10 ase to met tion
Module 4			
Normalization: Database Design Theor and Multivalued Dependencies: Informal Dependencies, Normal Forms based on Boyce-Codd Normal Form, Multivalue Dependencies and Fifth Normal Form Equivalence, and Minimal Cover, Proper Relational Database Schema Design, M	y – Introduction to Norr design guidelines for r Primary Keys, Second d Dependency and Fo . Normalization Algo ties of Relational Deco Nulls, Dangling tuples	malization using Function elation schema, Function and Third Normal Form, Jourth Normal Form, Jourth Normal Form, Jourthms: Inference Ru mpositions, Algorithms, and alternate Relation	onal 10 onal ms, foin les, for onal

Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and	d
Normal Forms	
Textbook 1: Ch14.1 to 14.7, 15.1 to 15.6	
RBT: L1, L2, L3	
Module 5	
Transaction Processing: Introduction to Transaction Processing, Transaction and Syste	n 10
concepts, Desirable properties of Transactions, Characterizing schedules based	n
recoverability, Characterizing schedules based on Serializability, Transaction support	n
SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurren	У
control, Concurrency control based on Timestamp ordering, Multiversion Concurren	У
control techniques, Validation Concurrency control techniques, Granularity of Data items at	d
Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recover	У
Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques bas	d
on immediate update, Shadow paging, Database backup and recovery from catastroph	.C
failures	
Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.	
RBT: L1, L2, L3	
Course Outcomes: The student will be able to :	
 Identify, analyze and define database objects, enforce integrity constraints on a data RDBMS. 	base using
• Use Structured Query Language (SQL) for database manipulation.	
• Design and build simple database systems	
• Develop application to interact with databases.	
Question Paper Pattern:	
• The question paper will have ten questions.	
• Each full Question consisting of 20 marks	
• There will be 2 full questions (with a maximum of four sub questions) from each m	dule.
• Each full question will have sub questions covering all the topics under a module.	
• The students will have to answer 5 full questions, selecting one full question from e	ich module.
Textbooks:	
1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th	Edition, 2017,
Pearson.	
2. Database management systems, Ramakrishnan, and Gehrke, 3 rd Edition, 2014, McC	raw Hill
Reference Books:	
1. Silberschatz Korth and Sudharshan, Database System Concepts, 6 th Edition, Mc-Gr	wHill, 2013.
2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implement	ation and
Management, Cengage Learning 2012.	

APPLICATION DEVELOPMENT USING PYTHON [(Effective from the academic year 2018 -2019)

	SEMESTER –	·V			
Course Code	18CS55	IA Marks	40		
Number of Lecture Hours/Week	03	Exam Marks	60		
Total Number of Lecture Hours	40	Exam Hours	03		
	CREDITS – 0	3			
Course Learning Objectives: This course	e (18CS55) will en	able students to			
• Learn the syntax and semantics of	f Python programm	ning language.			
• Illustrate the process of structurin	g the data using lis	sts, tuples and dictional	ries.		
• Demonstrate the use of built-in fu	nctions to navigat	e the file system.			
• Implement the Object Oriented Pr	rogramming conce	pts in Python.			
• Appraise the need for working wi	th various docume	ents like Excel, PDF, W	ord and Oth	ers.	
Module – 1				Teaching	
				Hours	
Python Basics, Entering Expressions into	o the Interactive S	Shell, The Integer, Floa	ating-Point,	08	
and String Data Types, String Concatena	ation and Replicat	ion, Storing Values in	Variables,		
Your First Program, Dissecting Your Pro	ogram, Flow contr	ol, Boolean Values, C	Comparison		
Operators, Boolean Operators, Mixing Boo	olean and Compar	ison Operators, Elemen	nts of Flow		
Control, Program Execution, Flow Co	ontrol Statements	, Importing Modules	s,Ending a		
Program Early with sys.exit(), Function	s, def Statements	with Parameters, Ret	urn Values		
and return Statements, The None Value,	Keyword Argume	nts and print(), Local	and Global		
Scope, The global Statement, Exception H	Handling, A Short	Program: Guess the Nu	umber		
Textbook 1: Chapters 1 – 3					
RBT: L1, L2					
Module – 2					
Lists, The List Data Type, Working with Lists, Augmented Assignment Operators, Methods,					
Example Program: Magic 8 Ball with a List, List-like Types: Strings and Tuples, References,					
Dictionaries and Structuring Data, The Dictionary Data Type, Pretty Printing, Using Data					
Structures to Model Real-World Things, Manipulating Strings, Working with Strings,					
Useful String Methods, Project: Password Locker, Project: Adding Bullets to Wiki Markup					
Textbook 1: Chapters 4 – 6					
<u>RBT: L1, L2, L3</u>					
Module – 3	•			00	
Pattern Matching with Regular Expre	essions, Finding P	atterns of Text Witho	out Regular	08	
Expressions, Finding Patterns of Text with	n Regular Express	Sions, More Pattern Mai	Character		
Regular Expressions, Greedy and Nong	reedy Matching,	I ne findall() Method,	, Character		
Wildoord Character Deview of Degev	Symbola Case In	and Donar Sign Char	acters, The		
Strings with the sub() Method Managing	Complex Person	Combining ro ICN			
re DOTALL and re VERBOSE Proje	complex Regere	s, combining to how	Extractor		
Reading and Writing Files Files a	nd File Paths "	The os path Module	The File		
Reading/Writing Process Saving Variab	les with the shelv	ve Module Saving Var	iables with		
the print pformat() Function Project: Generating Random Ouiz Files Project					
Multiclipboard, Organizing Files. The shutil Module. Walking a Directory Tree.					
Compressing Files with the zipfile Module. Project: Renaming Files with American-Style					
Dates to European-Style Dates, Project: Backing Up a Folder into a ZIP File. Debugging .					
Raising Exceptions, Getting the Traceback as a String, Assertions, Logging, IDLE's					
Debugger.	c c		•		
Textbook 1: Chapters 7 – 10					

RBT: L1, L2, L3	
Module – 4	
Classes and objects, Programmer-defined types, Attributes, Rectangles, Instances as return values, Objects are mutable, Copying, Classes and functions, Time, Pure functions, Modifiers, Prototyping versus planning, Classes and methods, Object-oriented features, Printing objects, Another example, A more complicated example, The init method, Thestr method, Operator overloading, Type-based dispatch, Polymorphism, Interface and implementation, Inheritance, Card objects, Class attributes, Comparing cards, Decks, Printing the deck, Add, remove, shuffle and sort, Inheritance, Class diagrams, Data encapsulation Textbook 2: Chapters 15 – 18 RBT: L1, L2, L3	08
Module – 5	0.0
Web Scraping, Project: MAPIT.PY with the webbrowser Module, Downloading Files from the Web with the requests Module, Saving Downloaded Files to the Hard Drive, HTML, Parsing HTML with the BeautifulSoup Module, Project: "I'm Feeling Lucky" Google Search,Project: Downloading All XKCD Comics, Controlling the Browser with the selenium Module, Working with Excel Spreadsheets, Excel Documents, Installing the openpyxl Module, Reading Excel Documents, Project: Reading Data from a Spreadsheet, Writing Excel Documents, Project: Updating a Spreadsheet, Setting the Font Style of Cells, Font Objects, Formulas, Adjusting Rows and Columns, Charts, Working with PDF and Word Documents, PDF Documents, Project: Combining Select Pages from Many PDFs, Word Documents, Working with CSV files and JSON data, The csv Module, Project: Removing the Header from CSV Files, JSON and APIs, The json Module, Project: Fetching Current Weather Data Textbook 1: Chapters 11 – 14	08
RBT: L1. L2. L3	
Course Outcomes: After studying this course, students will be able to	
 Demonstrate proficiency in handling of loops and creation of functions. Identify the methods to create and manipulate lists, tuples and dictionaries. Discover the commonly used operations involving regular expressions and file system. Interpret the concepts of Object-Oriented Programming as used in Python. Determine the need for scraping websites and working with CSV_ISON and other file 	formats
Ouestion paper pattern:	Tormuts
 The question paper will have ten questions. Each full Question consisting of 20 marks There will be 2 full questions (with a maximum of four sub questions) from each modu Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each 	le. module.
Text Books:	
 Al Sweigart, "Automate the Boring Stuff with Python", 1stEdition, No Starch F (Available under CC-BY-NC-SA license at https://automatetheboringstuff.com/) (Chapters 1 to 18) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Green Tea Press, 2015. (Available under CC-BY-NC licentify http://greenteapress.com/thinkpython2/thinkpython2.pdf) 	Press, 2015. 2 nd Edition, cense at
(Chapters 13, 15, 16, 17, 18) (Download pdf/html files from the above links)	
Keierence Books:	ition CPC
Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372	mon, CKC

- 2. Jake VanderPlas, "Python Data Science Handbook: Essential Tools for Working with Data",
- st Edition, O'Reilly Media, 2016. ISBN-13: 978-1491912058
 Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt Ltd, 2015. ISBN-13: 978-8126556014
- Wesley J Chun, "Core Python Applications Programming", 3rd Edition, Pearson Education India, 2015. ISBN-13: 978-9332555365

WEB TECHNOLOGY AND ITS APPLICATIONS				
(Effective from the academic year 2018 -2019)				
Course Code	$\frac{\text{SEMESTER} - \text{VI}}{18\text{CS63}}$	CIF Morks	40	
Number of Contact Hours/Week	3.2.0	SFE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
	CREDITS -4		05	
Course Learning Objectives: This course	e (18CS63) will enable s	students to:		
Illustrate the Semantic Structure of	f HTML and CSS			
 Compose forms and tables using H 	TTML and CSS			
 Design Client-Side programs usin 	g JavaScript and Server	-Side programs using l	онр	
Infer Object Oriented Programmir	g canabilities of PHP	Side programs using i		
Examine JavaScript frameworks s	uch as iOuery and Back	bone		
Module 1	aon as jQuoi y ana Baon		Contac	ct
			Hours	
Introduction to HTML, What is HTML	and Where did it co	me from?, HTML Sy	vntax, 10	
Semantic Markup, Structure of HTML Do	cuments, Quick Tour of	f HTML Elements, H7	ML5	
Semantic Structure Elements, Introductio	n to CSS, What is CSS	S, CSS Syntax, Locati	on of	
Styles, Selectors, The Cascade: How Style	s Interact, The Box Mo	del, CSS Text Styling.		
Textbook 1: Ch. 2, 3				
RBT: L1, L2, L3				
Module 2				
HTML Tables and Forms, Introducing	Tables, Styling Tables,	Introducing Forms,	Form 10	
Control Elements, Table and Form Accessibility, Microformats, Advanced CSS: Layout,			yout,	
Normal Flow, Positioning Elements, Floating Elements, Constructing Multicolumn Layouts,			outs,	
Approaches to CSS Layout, Responsive Design, CSS Frameworks.				
Textbook 1: Ch. 4,5				
RBT: L1, L2, L3				
Module 3	x a x x x			
JavaScript: Client-Side Scripting, What is	JavaScript and What ca	an it do?, JavaScript D	esign 10	
Principles, Where does JavaScript Go?, S	Syntax, JavaScript Obje	ects, The Document C	bject	
DHD What is Server Side Development	A Web Server's Deen	er-Side Development	with wr of	
PHP Program Control Functions	A web server's Kesp	onsidinaes, Quick To		
Taythook 1. Ch 6 8				
RRT. L1 L2 L3				
Module 4				
PHP Arrays and Superglobals, Arrays, \$	GET and \$ POST Supe	rglobal Arrays, \$ SEF	VER 10	
Array, \$ Files Array, Reading/Writing	Files, PHP Classes and	d Objects. Object-Ori	ented	
Overview. Classes and Objects in PHI	P. Object Oriented De	sign. Error Handling	and	
Validation. What are Errors and Exce	ptions?. PHP Error F	Reporting. PHP Error	and	
Exception Handling	Pronor, 111 2000 1	eponing, 111 2110		
Textbook 1: Ch. 9, 10				
RBT: L1. L2. L3				
Module 5				
Managing State. The Problem of State in	Web Applications. Pas	sing Information via (Duery 10	
Strings, Passing Information via the U	RL Path, Cookies. So	erialization, Session	State,	
HTML5 Web Storage, Caching, Advar	nced JavaScript and j	Query, JavaScript Ps	eudo-	
Classes, jQuery Foundations, AJAX, Asvr	hchronous File Transmis	ssion, Animation, Bacl	bone	

MVC Frameworks, XML Processing and Web Services, XML Processing, JSON, Overview of Web Services.

Textbook 1: Ch. 13, 15,17

RBT: L1, L2, L3

Course Outcomes: The student will be able to :

- Adapt HTML and CSS syntax and semantics to build web pages.
- Construct and visually format tables and forms using HTML and CSS
- Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP to generate and display the contents dynamically.
- Appraise the principles of object oriented development using PHP
- Inspect JavaScript frameworks like jQuery and Backbone which facilitates developer to focus on core features.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development", 1stEdition, Pearson Education India. (ISBN:978-9332575271)

Reference Books:

- 1. Robin Nixon, "Learning PHP, MySQL &JavaScript with jQuery, CSS and HTML5", 4thEdition, O'Reilly Publications, 2015. (ISBN:978-9352130153)
- 2. Luke Welling, Laura Thomson, "PHP and MySQL Web Development", 5th Edition, Pearson Education, 2016. (ISBN:978-9332582736)
- 3. Nicholas C Zakas, "Professional JavaScript for Web Developers", 3rd Edition, Wrox/Wiley India, 2012. (ISBN:978-8126535088)
- 4. David Sawyer Mcfarland, "JavaScript & jQuery: The Missing Manual", 1st Edition, O'Reilly/Shroff Publishers & Distributors Pvt Ltd, 2014

Mandatory Note:

Distribution of CIE Marks is a follows (Total 40 Marks):

- 20 Marks through IA Tests
- 20 Marks through practical assessmen

Maintain a copy of the report for verification during LIC visit.

Posssible list of practicals:

- 1. Write a JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient.
- 2. Write a JavaScript that calculates the squares and cubes of the numbers from 0 to 10 and outputs HTML text that displays the resulting values in an HTML table format.
- 3. Write a JavaScript code that displays text "TEXT-GROWING" with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays "TEXT-SHRINKING" in BLUE color. Then the font size decreases to 5pt.
- 4. Develop and demonstrate a HTML5 file that includes JavaScript script that uses functions for the following problems:
 - a. Parameter: A string
 - b. Output: The position in the string of the left-most vowel

c. Parameter: A number

- d. Output: The number with its digits in the reverse order
- 5. Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include USN, Name, and Name of the College, Programme, Year of Joining, and email id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.
- 6. Write a PHP program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 7. Write a PHP program to display a digital clock which displays the current time of the server.
- 8. Write the PHP programs to do the following:
 - a. Implement simple calculator operations.
 - b. Find the transpose of a matrix.
 - c. Multiplication of two matrices.
 - d. Addition of two matrices.
- 9. Write a PHP program named states.py that declares a variable states with value "Mississippi Alabama Texas Massachusetts Kansas". write a PHP program that does the following:
 - a. Search for a word in variable states that ends in xas. Store this word in element 0 of a list named statesList.
 - b. Search for a word in states that begins with k and ends in s. Perform a case-insensitive comparison. [Note: Passing re.Ias a second parameter to method compile performs a case-insensitive comparison.] Store this word in element1 of statesList.
 - c. Search for a word in states that begins with M and ends in s. Store this word in element 2 of the list.
 - d. Search for a word in states that ends in a. Store this word in element 3 of the list.
- 10. Write a PHP program to sort the student records which are stored in the database using selection sort.

	MOBILE APPLICATION DEVELOPMENT				
	(Effective from the academic year 2018 -2019)				
	SEMESTER – VI				
Cours	e Code	18CSMP68	IA Marks	40	
Numb	er of Contact Hours/Week	0:0:2	Exam Marks	60	
Total	Number of Contact Hours	3 Hours/Week	Exam Hours	03	
		$\frac{\text{CREDITS} - (}{}$	2		
Labor	atory Objectives: Thislaboratory	(18CSMP68) will e	nable students to		
•	Learn and acquire the art of And	roid Programming.			
•	ConfigureAndroid studio to run	the applications.			
•	Understand and implement And	oid's User interface	e functions.		
•	Create, modify and query on SQ	lite database.			
•	Inspect different methods of share	ring data using serv	ices.		
Descri	iptions (if any):				
1.	The installation procedure of the	e Android Studio/Ja	va software must be	demonstrated and carried	
	out in groups.				
2.	Students should use the late	est version of A	ndroid Studio/Java	/ Kotlin to execute these	
	programs. Diagrams given are for	representational p	irposes only, student	s are expected to improvise	
3	Part B programs should be dev	eloned as an annl	cation and are to b	a demonstrated as a mini	
5.	project in a group by adding ex	tra features or the	e students can also	develop their application	
	and demonstrate it as a mini-	project. (Projects/	programs are not li	mited to the list given in	
	Part B).				
Progra	ams List:				
	1	PART – A			
1	Create an application to design a	aVisiting Card. The	Visiting card should	d havea companylogoatthe	
	top right corner. The company r	name should be dis	played in Capital let	ters, aligned to the center.	
	Information like the name of th	e employee, job tit	le, phone number, a	ddress, email, fax and the	
	website address isto be display	ed. Insert a horizo	ntal line between th	ne job title and the phone	
	number.			5	
	COMPANY NAME				
Nome					
	Job Title				
		Phone Nun	ber		
		Address Email, website, fo	x details		
2	Develop an Android application	n usingcontrols lik	Button TextView	EditText for designing a	
a calculatorbaying basic functionality like Addition. Subtraction Multiplication and Division					
	calculatornaving basic functiona				

	SIMPL	E CALCULATOR
	Result	
	Input <f< th=""><th>Edit Text></th></f<>	Edit Text>
	7	8 9 /
		5 6 1
	Lid L	
		C
3	Create a SIGN Up activity with Username based on the following rules:	and Password. Validation of password should happen
	Password should contain upper	and lowercase latters
	 Password should contain letters 	and numbers
	 Password should contain reters Password should contain specia 	l characters.
	Minimum length of the passwor	d (the default value is 8).
	On successful SIGN UP proceed to the nex	t Login activity. Here the user should SIGN IN using
	the Username and Password created during	g signup activity. If the Username and Password are
	matched then navigate to the next activity w	which displays a message saying "Successful Login" or
	that display a toast message saying "Failed I	ogin Attempts" and disable the SIGN IN button. Use
	Bundle to transfer information from one acti	ivity to another.
	SIGNUP ACTIVITY	LOGIN ACTIVITY
		Usernome
	Username:	
	Password	Password:
	SIGN UP	SIGN IN
1		

4	Develop an application to set an ima should start to change randomly every	ege as wallpaper. On click 7 30 seconds.	of a button, the wallpaper image
	CHANGIN	G WALLPAPER APPLIC	ATION
	CLICH	KHERE TO CHANGE WALLPAPE	R
5	Write a program to create an pressingoftheSTART button, the acti One and the counter must keep on co value in a TextViewcontrol.	activity with two but vity must start the counter unting until the STOP butt	tons START and STOP. On r by displaying the numbers from ron is pressed. Display the counter
	cc	OUNTER APPLICATION	J
		Counter Value	
		START	
		STOP	
	Courts true files of VMI and 160	NI (mar million from from from from from from from from	O'te Nume Letterde Lensited
0	Temperature, and Humidity. Develop a the XML and JSON files which whe side by side.	an application to create an n clicked should display th	activity with two buttons to parse he data in their respective layouts
		PARSING XML	AND JSON DATA
	PARSING XML AND JSON DATA	XML DATA	JSON Data
		City_Name: Mysore	City_Name: Mysore
	Parse XML Data	Latitude: 12.295	Latitude: 12.295
		Longitude: 76.639	Longitude: 76.639
	Parse JSON Data	lemperature: 22 Humidity: 90%	Temperature: 22 Humidity: 90%
		1070	

7	Develop a simple application withoneEditTextso that the user can write some text in it. Create a
	button called "Convert Text to Speech" that converts the user input text into voice.
	TEXT TO SPEECH APPLICATION
	Convert Text to Speech
8	Create an activity like a phone dialer with CALL and SAVE buttons. On pressing the CALL
	button, it must call the phone number and on pressing the SAVE button it must save the number
	to the phone contacts.
	-
	CALL AND SAVE APPLICATION
	1234567890 DEL
	1 2 3
	4 5 6
	* 0 #
	CALL SAVE
	PART - B
1	Write a program to enter Medicine Name. Date and Time of the Day as input from the user and
1	while a program to enter Medicine Mane, bate and Thile of the Day as input from the user and
	store it in the SQLite database. Input for Time of the Day should be either Morning of Alternoon
	or Eveningor Night. Trigger an alarm based on the Date and Time of the Day and display the
	Medicine Name.
	MEDICINE DATABASE
	Medicine Name:
	Date:
	Time of the Day:
	Insert

2	Develop a content provider application with	an activity called "Me	eting	Schedule	" which	takes
	Date, Time and Meeting Agenda as input from the user and store this information into the SQLite					
	database. Create another application with an activity called "Meeting Info" having DatePicker					vicker
	control which on the selection of a date should display the Meeting Agenda information for					or that
	particular date else it should display a toast m	essage saving "No Mee	eting o	n this Da	ite"	i tilut
	particular date, else il should display a toast il	lessage saying 110 mee	ung o			
			0			
		MEETING IN	0			
		Pick a data to get meeting info:		- 60		
		Fick a date to get meeting into.	//			
			Mar 1			
	MEETING SCHEDULE		mon, J	ur 23		
			° в н	т w т	F S	
			1 1			
	Date:					
			• •	0 11 12	9 M	
	Time:		8 16	17 18 19	20 21	
			22 23	24 25 26	27 28	
	Meeting Agenda:		29 00	01		
				CANCEL	OK	
	Add Meeting Agenda					
	Add Heeding Agendu	Search				
3	Create an application to receive an incoming	SMS which is notified	to the	e user. O	n clickin	g this
	SMS notification, the message content and t	he number should be a	lisplay	ved on th	ne screen	. Use
	appropriate emulator control to send the SMS	message to your applic	ation.			
	SMS A					
	SI IS A	LICATION				
	Display	SMS Number				
	Distant					
	Display	SMS Message				
4	Write a program to create an activity having a	a Text box, and also Sa	ve, Or	ben and C	Create bu	ttons.
	The user has to write some text in the Text be	ox. On pressing the Cre	eate bi	utton the	text shor	ıld be
	saved as a text file in MkSDcard. On subseq	uent changes to the tex	rt the	Save but	tton shor	ild be
	pressed to store the latest content to the some	file. On pressing the C	non h	utton it	should d	
	pressed to store the fatest content to the same	The. On pressing the C	pen b	utton, it s		spiay
	the contents from the previously stored files i	in the Text box. If the t	iser tr	les to sav	e the coi	itents
	in the Textbox to a file without creating it, th	en a toast message has	to be	displayed	1 saying	"First
	Create a File".					

	FILE APPLICATION
	Create Open
	Save
5	Create an application to demonstrate a basic media playerthat allows the user to Forward, Backward, Play and Pause an audio. Also, make use of the indicator in the seek bar to move the audio forward or backward as required.
	MEDIA PLAYER APPLICATION
	Audio Name
6	Develop an application to demonstrate the use of Asynchronous tasks in android. The asynchronous task should implement the functionality of a simple moving banner. On pressing the Start Task button, the banner message should scrollfrom right to left. On pressing the Stop Task button, the banner message should stop.Let the banner message be "Demonstration of Asynchronous Task".
	ASYNCHRONOUS TASK
	Start Task
	End Task
7	Develop an application that makes use of the clipboard framework for copying and pasting of the text. The activity consists of two EditText controls and two Buttons to trigger the copy and paste functionality.

	CLIPBOARD ACTIVITY					
	Copy Text Paste Text					
8	Create an AIDL service that calculates Car Loan EMI. The formula to calculate EMI is					
	$\mathbf{E} = \mathbf{P} * (\mathbf{r}(1+\mathbf{r})^n) / ((1+\mathbf{r})^n-1)$					
	where					
	E = The EMI payable on the car loan amount					
	P = 1 he Car Ioan Principal Amount r – The interest rate value computed on a monthly basis					
	n = The loan tenure in the form of months					
	The down payment amount has to be deducted from the principal amount paid towards buying the Car. Develop an application that makes use of this AIDL service to calculate the EMI. This application should have four EditText to read the PrincipalAmount, Down Payment, Interest Rate, Loan Term (in months) and a button named as "Calculate Monthly EMI". On click of this button,					
	the result should be shown in a TextView. Also, calculate the EMI by varying the Loan Term and Interest Rate values.					
	CAR EMI CALCULATOR					
	Principal Amount: EMI: Result					
	Down Payment:					
	Interest Rate:					
	Loan Term (in months):					
	Calculate Monthly EMI					
Labora	atory Outcomes: After studying theselaboratory programs, students will be able to					
•	Create, test and debug Android application by setting up Android development environment.					
•	Implement adaptive, responsive user interfaces that work across a wide range of devices.					
٠	Infer long running tasks and background work in Android applications.					

Demonstrate methods in storing, sharing and retrieving data in Android applications.

• Infer the role of permissions and security for Android applications.

Procedure to Conduct Practical Examination

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - For laboratories having PART A and PART B: Students are allowed to pick oneexperiment from PART A and one experiment from PART B, with equalopportunity.

• Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.

- Marks Distribution (Courseed to change in accordance with university regulations)
 - For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15= 100 Marks
 - For laboratories having PART A and PART B
 i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Text Books:

1.	Google Developer	Training,	"Android	Developer	Fundamentals	Course	- Concept
	Reference",	Google	Devel	oper	Training	Team,	2017.
	https://www.gitbook.	.com/book/g	google-devel	oper-training	/android-develope	er-fundam	entals-
	course-concepts/deta	<u>ils</u>					
	(Download pdf file from the above link)						

- Erik Hellman, "Android Programming Pushing the Limits", 1st Edition, Wiley India Pvt Ltd, 2014. ISBN-13: 978-8126547197
- 2. Dawn Griffiths and David Griffiths, **"Head First Android Development"**, 1st Edition, O'Reilly SPD Publishers, 2015. ISBN-13: 978-9352131341
- 3. Bill Phillips, Chris Stewart and Kristin Marsicano, "Android Programming: The Big Nerd Ranch Guide", 3rd Edition, Big Nerd Ranch Guides, 2017. ISBN-13: 978-0134706054

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING						
(Effective from the academic year 2018 -2019) SEMESTER – VII						
Course Code	18CS71		CIE Marks	40	l .	
Number of Contact Hours/Week	Number of Contact Hours/Week4:0:0SEE Marks60					
Total Number of Contact Hours	50		Exam Hours	03		
	CREDIT	TS -4				
Course Learning Objectives: This cours	e (18CS71) w	vill enable s	students to:			
Explain Artificial Intelligence andIllustrate AI and ML algorithm and	 Explain Artificial Intelligence and Machine Learning Illustrate AI and ML algorithm and their use in appropriate applications 					
Module 1						
What is artificial intelligence?, Problem	ns, problem	spaces and	d search, Heuris	stic search	10	
techniques						
Texbook 1: Chapter 1, 2 and 3						
RBT: L1, L2						
Module 2						
Knowledge representation issues, Predicat	te logic, Repr	esentaiton l	knowledge using	rules.	10	
Concpet Learning: Concept learning tas	k, Concpet l	earning as	search, Find-S	algorithm,		
Candidate Elimination Algorithm, Inducti	ve bias of Ca	ndidate Elii	mination Algorit	hm.		
Texbook 1: Chapter 4, 5 and 6						
Texbook2: Chapter 2 (2.1-2.5, 2.7)						
KB1: L1, L2, L3						
Decision Tree Learning: Introduction D	acision traa	ranracantati	on Appropriate	problems	10	
ID3 algorith	cension tree	representati	ion, Appropriate	problems,	10	
Aritificil Nueral Network: Introduction, NN representation, Appropriate problems,						
Perceptrons, Backpropagation algorithm.						
Texbook2: Chapter 3 (3.1-3.4), Chapter 4 (4.1-4.5)						
RBT: L1, L2, L3						
Module 4						
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, ML					10	
and LS error hypothesis, ML for predicti	ng, MDL pri	nciple, Bate	es optimal classi	fier, Gibbs		
algorithm, Navie Bayes classifier, BBN, E	EM Algorithm	1				
Texbook2: Chapter 6						
RBT: L1, L2, L3						
					10	
regression Radial basis function Case Ba	sed reasoning	ignoour Le	earning, Locally	weighted	10	
Reinforcement Learning: Introduction The learning task O-Learning						
Texbook 1: Chapter 8 (8.1-8.5). Chapter 13 (13.1 – 13.3)						
RBT: L1. L2. L3						
Course Outcomes: The student will be at	ole to :				•	
• Appaise the theory of Artificial in	telligence and	d Machine	Learning.			
• Illustrate the working of AI and ML Algorithms.						
• Demonstrate the applications of AI and ML.						
Question Paper Pattern:						
• The question paper will have ten o	questions.					
• Each full Question consisting of 20 marks						

- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

• The students will have to answer 5 full questions, selecting one full question from each module. **Textbooks:**

1 T

- 1. Tom M Mitchell, **"Machine Lerning"**, 1st Edition, McGraw Hill Education, 2017.
- 2. Elaine Rich, Kevin K and S B Nair, "Artificial Inteligence", 3rd Edition, McGraw Hill Education, 2017.

Reference Books:

- 1. Saroj Kaushik, Artificial Intelligence, Cengage learning
- 2. Stuart Rusell, Peter Norving, Artificial Intelligence: A Modern Approach, Pearson Education 2nd Edition
- 3. AurÈlienGÈron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st Edition, Shroff/O'Reilly Media, 2017.
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.

5. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press

6. Srinvivasa K G and Shreedhar, "Artificial Intelligence and Machine Learning", Cengage

BIG DATA AND ANALYTICS					
(Effective from the academic year 2018 -2019)					
Course Code	<u>SEMESTER –</u> 18CS72	CIE Marks	40		
Number of Contact Hours/Week	4:0:0	SEE Marks	60		
Fotal Number of Contact Hours50Exam Hours03					
	CREDITS -	-4			
Course Learning Objectives: This course	e (18CS72) will	enable students to:			
 Understand fundamentals of Big I Explore the Hadoop framework at Illustrate the concepts of NoSOL 1 	Data analytics ad Hadoop Distrius using MongoDB	ibuted File system and Cassandra for Big Data			
Employ MapReduce programming	g model to proce	ss the big data			
Understand various machine learn Network Analysis	ing algorithms f	for Big Data Analytics, Web	Mining	and Social	
Module 1					
Introduction to Big Data Analytics:	Big Data, Sca	alability and Parallel Proce	essing,	10	
Designing Data Architecture, Data Sou	rces, Quality, 1	Pre-Processing and Storing,	, Data		
Storage and Analysis, Big Data Analytics	Applications and	l Case Studies.			
Text book 1: Chapter 1: 1.2 -1.7					
RBT: L1, L2, L3					
Module 2					
Introduction to Hadoop (T1): Introduction, Hadoop and its Ecosystem, Hadoop Distributed File System, MapReduce Framework and Programming Model, Hadoop Yarn, Hadoop Ecosystem Tools. Hadoop Distributed File System Basics (T2): HDFS Design Features, Components, HDFS					
User Commands.					
Essential Hadoop Tools (T2): Using Apa	che Pig, Hive, S	qoop, Flume, Oozie, HBase.			
Text book 1: Chapter 2 :2.1-2.6					
Text Book 2: Chapter 3					
Text Book 2: Chapter 7 (except walk the	roughs)				
RBT: L1, L2, L3					
Module 3					
NoSQL Big Data Management, MongoDB and Cassandra: Introduction, NoSQL Data Store, NoSQL Data Architecture Patterns, NoSQL to Manage Big Data, Shared-Nothing Architecture for Big Data Tasks, MongoDB, Databases, Cassandra Databases. Text book 1: Chapter 3: 3.1-3.7 RBT: L1, L2, L3					
Module 4					
MapReduce, Hive and Pig: Introducti MapReduce Execution, Composing Map HiveQL, Pig. Text book 1: Chapter 4: 4.1-4.6 RBT: L1, L2, L3	on, MapReduce DReduce for Ca	Map Tasks, Reduce Task lculations and Algorithms,	and Hive,	10	

Modul	e 5					
Machin relation Regress Freque Text, V Mining a Web Text b	 ne Learning Algorithms for Big Data Analytics: Introduction, Estimating the aships, Outliers, Variances, Probability Distributions, and Correlations, sion analysis, Finding Similar Items, Similarity of Sets and Collaborative Filtering, nt Itemsets and Association Rule Mining. Web Content, Link, and Social Network Analytics: Introduction, Text mining, Web g, Web Content and Web Usage Analytics, Page Rank, Structure of Web and analyzing Graph, Social Network as Graphs and Social Network Analytics: ook 1: Chapter 6: 6.1 to 6.5 	10				
Text b	ook 1: Chapter 9: 9.1 to 9.5					
Course	e Outcomes: The student will be able to:					
•	Understand fundamentals of Big Data analytics.					
•	Investigate Hadoop framework and Hadoop Distributed File system.					
•	Illustrate the concepts of NoSQL using MongoDB and Cassandra for Big Data.					
•	Demonstrate the MapReduce programming model to process the big data along wittools.	th Hadoop				
•	• Use Machine Learning algorithms for real world big data.					
• Analyze web contents and Social Networks to provide analytics with relevant visualization tools.						
Questi	on Paper Pattern:					
•	The question paper will have ten questions.					
•	Each full Question consisting of 20 marks					
•	• There will be 2 full questions (with a maximum of four sub questions) from each module.					
•	Each full question will have sub questions covering all the topics under a module.					
•	The students will have to answer 5 full questions, selecting one full question from each module.					
Textbo	ooks:					
1.	Raj Kamal and Preeti Saxena, "Big Data Analytics Introduction to Hadoop, Spark,	and				
	Machine-Learning", McGraw Hill Education, 2018 ISBN: 9789353164966, 9353164	966				
2.	Douglas Eadline, "Hadoop 2 Quick-Start Guide: Learn the Essentials of	Big Data				
	Computing in the Apache Hadoop 2 Ecosystem'' , 1 st Edition, Pearson Education, 20	016. ISBN-				
	13: 978-9332570351					
Refere	nce Books:					
1.	Tom White, "Hadoop: The Definitive Guide" , 4 th Edition, O'Reilly Media, 2015.ISB 9352130672	N-13: 978-				
2.	. Boris Lublinsky, Kevin T Smith, Alexey Yakubovich, "Professional Hadoop Solutions",					
-	1 st Edition, Wrox Press, 2014ISBN-13: 978-8126551071	e st—				
3.	Eric Sammer, "Hadoop Operations: A Guide for Developers and Administrators",	1"Edition,				
	O'Reilly Media, 2012.ISBN-13: 978-9350239261					
4.	Arshdeep Bahga, Vijay Madisetti, "Big Data Analytics: A Hands-On Approach", 1s	st Edition,				
	VP1 Fudications, 2018. ISBN-13: 978-0996025577					

USER INTERFACE DESIGN					
(Effective from the academic year 2018 -2019) SEMESTER – VII					
Course Code	18CS734	CIE Marks	40		
Number of Contact Hours/Week	3:0:0	SEE Marks	60		
Total Number of Contact Hours40Exam Hours03					
	CREDITS –3				
Course Learning Objectives: This course	e (18CS734) will er	hable students to:			
• To study the concept of menus, w	indows, interfaces				
To study about business functions					
• To study the characteristics and co	omponents of windo	ows and the various control	ols for the windows		
 To study about various problems i 	n windows design	with color, text, graphics	a		
nd To study the testing methods					
Module 1			Contact		
			Hours		
The User Interface-Introduction, Overview	w, The importance	of user interface - Defin	ing the 08		
user interface, The importance of Good	design, Characteris	stics of graphical and we	eb user		
interfaces, Principles of user interface desi	gn				
Textbook 1: Ch. 1,2					
RBT: L1, L2					
Module 2					
The User Interface Design process- Obst	acles, Usability, H	uman characteristics in I	Design, 08		
Human Interaction speeds, Business functions-Business definition and requirement analysis.					
Basic business functions, Design standard	s.	1	5		
Textbook 1: Part-2					
RBT: L1, L2					
Module 3					
System menus and navigation schemes- Structures of menus, Functions of menus, Contents 08					
of menus, Formatting of menus, Phrasin	ng the menu, Selec	cting menu choices, Nav	rigating		
menus, Kinds of graphical menus.	-	-			
Textbook 1: Part-2					
RBT: L1, L2					
Module 4					
Windows - Characteristics, Components	of window, Windo	w presentation styles, T	ypes of 08		
window, Window management, Organiz	ing window functi	ions, Window operations	s, Web		
systems, Characteristics of device based co	ontrols.	*			
Textbook 1: Part-2					
RBT: L1, L2					
Module 5					
Screen based controls- Operable control. Text control. Selection control. Custom control.					
Presentation control. Windows Tests-prototypes, kinds of tests.					
Textbook 1: Part-2					
RBT: L1, L2					
Course Outcomes: The student will be able to :					
• Design the User Interface. desig	n, menu creation.	windows creation and c	connection betweer		
menus and windows					
Ouestion Paper Pattern:					
• The question paper will have ten a	juestions.				
 Each full Question consisting of 20 marks 					

- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Wilbert O. Galitz, "The Essential Guide to User Interface Design", John Wiley &

Sons, Second Edition 2002.

- 1. Ben Sheiderman, "Design the User Interface", Pearson Education, 1998.
- 2. Alan Cooper, "The Essential of User Interface Design", Wiley- Dream Tech
- Ltd.,2002

CRYPTOGRAPHY					
(Effective from the academic year 2018 - 2019)					
Course Code	<u>18CS744</u>	CIF Marks	40		
Number of Contact Hours/Week 3:0:0 SEE Marks 60					
Total Number of Contact Hours	40	Exam Hours	03		
CREDITS -3					
Course Learning Objectives: This course	(18CS744) will	enable students to:			
• Define cryptography and its princip	ples				
• Explain Cryptography algorithms					
• Illustrate Public and Private key cry	yptography				
• Explain Key management, distribu	tion and ceritific	ation			
• Explain authentication protocols					
• Tell about IPSec					
Module – 1				Contact	
				Hours	
Classical Encryption Techniques Symmo	etric Cipher Mod	lel, Cryptography, Crypt	analysis	08	
and Brute-Force Attack, Substitution Tech	iniques, Caesar	Cipher, Monoalphabetic	Cipher,		
data encryption standard: Traditional b	c Cipher, One Ti lock Cipher stru	cture stream Ciphers and	and the		
Ciphers, Motivation for the feistel Cipher	structure, the fei	stel Cipher. The data end	cryption		
standard, DES encryption, DES decryption	n, A DES examp	ble, results, the avalanch	e effect,		
the strength of DES, the use of 56-Bit	Keys, the nature	e of the DES algorithm,	, timing		
attacks, Block cipher design principles, number of rounds, design of function F, key					
schedule algorithm					
Textbook 1: Ch. 2.1,2.2, Ch. 3					
KBT: L1, L2 Module 2					
Public Key Crystography and DSA: Dr	inciples of publi	a kay any productions Du	blig kov	08	
cruptosystems Applications for public k	incipies of public	c-key cryptosystems. Pu	blic kov	08	
cryptosystems, public-key cryptanalysis	Cy Cryptosystem The RSA algorit	hm description of the al	orithm		
computational aspects the security of RSA	The RSA algorith	min, destription of the alg	301111111,		
computational aspects, the security of KSA.					
Other Public-Key Cryptosystems: Diff	fie-hellman key	exchange, The algorith	ım, key		
exchange protocols, man in the middle attack, Elgamal Cryptographic systems					
Textbook 1: Ch. 9, Ch. 10.1,10.2					
Module – 3					
Filiptic curve arithmetic abelian groups	elliptic curves or	ver real numbers elliptic	c curves	08	
over Zn elliptic curves over GE(2m). Elliptic curve cryptography. Analog of Diffie hellman					
key exchange. Elliptic curve encryption/ decryption. security of Elliptic curve cryptography					
Pseudorandom number generation based on an asymmetric cipher. PRNG based on RSA.					
	G 1				
Key Management and Distribution:	Symmetric key	distribution using Syn	mmetric		
transparent key control scheme Decer	atrolized key	control, session key ind	etime, a		
Symmetric key distribution using asymm	etric encryption	simple secret key distr	ribution		
secret key distribution with confidentiality	and authenticatic	on, A hybrid scheme. dist	ribution		
of public keys, public announcement of public keys, publicly available directory, public key					

authority, public keys certificates					
Textbook 1: Ch. 10.3-10.5, Ch.14.1 to 14.3					
RBT: L1, L2					
Module – 4					
X-509 certificates. Certificates, X-509 version 3, public key infrastructure .User Authentication: Remote user Authentication principles, Mutual Authentication, one wayAuthentication, remote user Authentication using Symmetric encryption, Mutual Authentication, one way Authentication, Kerberos, Motivation, Kerberos version 4, Kerberos version 5, Remote user Authentication using Asymmetric encryption, Mutual Authentication, one way Authentication. Electronic Mail Security: Pretty good privacy, notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail threats, DKIM strategy, DKIM functional flow. Textbook 1: Ch. 14.4, Ch. 15.1 to 15.4, Ch.19					
KD1: L1, L2 Modulo 5					
 IP Security: IP Security overview, applications of IPsec, benefits of IPsec, Routing applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, Security associations, Security associations database, Security policy database, IP traffic processing, Encapsulating Security payload, ESP format, encryption and authentication algorithms, Padding, Anti replay service Transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats, cryptographic suits. Textbook 1: Ch. 20.1 to 20.3 RBT: L1, L2 					
Define ammteaments and its mineinlag					
 Define cryptography and its principles Explain Cryptography algorithms Illustrate Public and Private key cryptography Explain Key management, distribution and ceritification Explain authentication protocols Tell about IPSec 					
Question paper pattern:					
• The question paper will have ten questions.					
 There will be 2 questions from each module. Each question will have questions counting all the tanking and the second secon					
 Each question will have to answer 5 full questions, selecting one full question from and 	h module				
The students will have to answer 5 full questions, selecting one full question from each	n mouule.				
1 William Stallings: Cruntography and Natwork Sagurity Dearson 6 th addition					
1. witham stanlings. Cryptography and Network Security, Pearson of edition.					
Reference Dooks:					

1. V K Pachghare: Cryptography and Information Security, PHI 2nd Edition.

ELECTRONIC DEVICES

Course Code	:18EC33	CIE Marks : 40			
Lecture Hours/Week	:03	SEE marks : 60			
Total Number of Lecture H	lours : 40 (8 Hours / Modul	e) Exam Hours : 03			
CREDITS-03					

Course Learning Objectives: This course will enable students to:

- Understand the basics of semiconductor physics and electronic devices.
- Describe the mathematical models BJTs and FETs along with the constructional details.
- Understand the construction and working principles of optoelectronic devices
- Understand the fabrication process of semiconductor devices and CMOS process integration.

Module-1

Semiconductors

Bonding forces in solids, Energy bands, Metals, Semiconductors and Insulators, Direct and Indirect semiconductors, Electrons and Holes, Intrinsic and Extrinsic materials, Conductivity and Mobility, Drift and Resistance, Effects of temperature and doping on mobility, Hall Effect.

(Text 1: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.2.3, 3.2.4, 3.4.1, 3.4.2, 3.4.3, 3.4.5). L1,L2

Module-2

pn Junctions

Forward and Reverse biased junctions- Qualitative description of Current flow at a junction, reverse bias, Reverse bias breakdown- Zener breakdown, avalanche breakdown, Rectifiers. (Text 1: 5.3.1, 5.3.3, 5.4, 5.4.1, 5.4.2, 5.4.3) Optoelectronic Devices Photodiodes: Current and Voltage in an Illuminated Junction, Solar Cells, Photodetectors. Light Emitting Diode: Light Emitting materials.

(Text 1: 8.1.1, 8.1.2, 8.1.3, 8.2, 8.2.1),

Module – 3

Bipolar Junction Transistor

Fundamentals of BJT operation, Amplification with BJTS, BJT Fabrication, The coupled Diode model (Ebers-Moll Model), Switching operation of a transistor, Cutoff, saturation, switching cycle, specifications, Drift in the base region, Base narrowing, Avalanche breakdown.

(Text 1: 7.1, 7.2, 7.3, 7.5.1, 7.6, 7.7.1, 7.7.2, 7.7.3) L1,L2

L1,L2

Module-4

Field Effect Transistors

Basic pn JFET Operation, Equivalent Circuit and Frequency Limitations, MOSFET-Two terminal MOS structure-Energy band diagram, Ideal Capacitance – Voltage Characteristics and Frequency Effects, Basic MOSFET Operation-MOSFET structure, Current-Voltage Characteristics.

(Text 2: 9.1.1, 9.4, 9.6.1, 9.6.2, 9.7.1, 9.7.2, 9.8.1, 9.8.2). L1,L2

Module-5

Fabrication of p-n junctions

Thermal Oxidation, Diffusion, Rapid Thermal Processing, Ion implantation, chemical vapour deposition, photolithography, Etching, metallization.

(Text 1: 5.1)

Integrated Circuits

Background, Evolution of ICs, CMOS Process Integration, Integration of Other Circuit Elements. (Text 1: 9.1, 9.2, 9.3.1, 9.3.3). L1,L2

Course outcomes: After studying this course, students will be able to:

- 1. Understand the principles of semiconductor Physics
- 2. Understand the principles and characteristics of different types of semiconductor devices
- 3. Understand the fabrication process of semiconductor devices
- 4. Utilize the mathematical models of semiconductor junctions for circuits and systems.
- 5. Identify the mathematical models of MOS transistors for circuits and systems.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. Ben. G. Streetman, Sanjay Kumar Banerjee, "Solid State Electronic Devices", 7th Edition, Pearson Education, 2016, ISBN 978-93-325-5508-2.
- 2. Donald A Neamen, Dhrubes Biswas, "Semiconductor Physics and Devices", 4th Edition, McGraw Hill Education, 2012, ISBN 978-0-07-107010-2.

- S. M. Sze, Kwok K. Ng, "Physics of Semiconductor Devices", 3rd Edition, Wiley, 2018.
- 2. Adir Bar-Lev, "Semiconductor and Electronic Devices", 3rd Edition, PHI, 1993.

POWER ELECTRONICS AND INSTRUMENTATION

Course Code	: 18EC36	CIE Marks : 40		
Lecture Hours/Wee	k: 03	SEE marks : 60		
Total Number of Le	cture Hours : 40 (8 Hrs / Module)	Exam Hours : 03		
CREDITS-03				

Course Learning Objectives: This course will enable students to:

- Study and analysis of thyristor circuits with different triggering conditions.
- Learn the applications of power devices in controlled rectifiers, converters and inverters.
- Understand types of instrument errors.
- Develop circuits for multirange Ammeters and Voltmeters.
- Describe principle of operation of digital measuring instruments and Bridges.
- Understand the operation of Transducers, Instrumentation amplifiers and PLCs.

Module - 1

Introduction: History, Power Electronic Systems, Power Electronic Converters and Applications (1.2, 1.3 1.5 & 1.6 of Text 1).

Thyristors: Static Anode-Cathode characteristics and Gate characteristics of SCR, Turn-ON methods, Turn-OFF mechanisms (**2.3, 2.6 without 2.6.1**), **2.7, 2.9 of text 1**),

Turn-OFF Methods: Natural and Forced Commutation – Class A and Class B types (refer 2.10 without design considerations),

Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit (refer 3.5 up to 3.5.2 of Text 1),

Unijunction Transistor: Basic operation and UJT Firing Circuit (refer 3.6, up to 3.6.4, except 3.6.2).

L1, L2

Module - 2

Phase Controlled Converter: Control techniques, Single phase half wave and full wave controlled rectifier with resistive and inductive loads, effect of freewheeling diode (**refer Chapter 6 of Text 1 up to 6.4.1 without derivations**). **Choppers:** Chopper Classification, Basic Chopper operation: step-down, step-up and step-up/down choppers. (**refer Chapter 8 of Text 1 up to 8.3.3**)

L1, L2, L3

Module - 3

Inverters: Classification, Single phase Half bridge and full bridge inverters with R and RL load (**refer Chapter 9 of Text 1 up to 9.4.2 without Circuit Analysis**).

Switched Mode Power Supplies: Isolated Flyback Converter, Isolated Forward Converter (only refer to the circuit operations in section 16.3 of Text 1 up to 16.3.2 except 16.3.1.3 and derivations).

Principles of Measurement: Static Characteristics, Error in Measurement, Types of Static Error. (Text 2: 1.2-1.6)

Multirange Ammeters, Multirange voltmeter. (Text 2: 3.2, 4.4)

L1, L2, L3

Module - 4

Digital Voltmeter: Ramp Technique, Dual slope integrating Type DVM, Direct Compensation type and Successive Approximations type DVM (Text 2: 5.1-5.3, 5.5, 5.6)

Digital Multimeter: Digital Frequency Meter and Digital Measurement of Time, Function Generator.

Bridges: Measurement of resistance: Wheatstone's Bridge, AC Bridges - Capacitance and Inductance Comparison bridge, Wien's bridge.

(Text 2: refer 6.2, 6.3 up to 6.3.2, 6.4 up to 6.4.2, 8.8, 11.2, 11.8-11.10, 11.14).

Module - 5

Transducers: Introduction, Electrical Transducer, Resistive Transducer, Resistive position Transducer, Resistance Wire Strain Gauges, Resistance Thermometer, Thermistor, LVDT.

(Text 2: 13.1-13.3, 13.5, 13.6 up to 13.6.1, 13.7, 13.8, 13.11).

Instrumentation Amplifier using Transducer Bridge, Temperature indicators using Thermometer, Analog Weight Scale (Text 2: 14.3.3, 14.4.1, 14.4.3).

Programmable Logic Controller: Structure, Operation, Relays and Registers (Text 2: 21.15, 21.15, 21.15.3, 21.15.5, 21.15.6).

L1, L2, L3

Course Outcomes: At the end of the course students should be able to:

- 1. Build and test circuits using power electronic devices.
- 2. Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters and SMPS.
- 3. Analyze instrument characteristics and errors.
- 4. Describe the principle of operation and develop circuits for multirange Ammeters, Voltmeters and Bridges to measure passive component values and frequency.
- 5. Explain the principle, design and analyze the transducers for measuring physical parameters.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897
- 2. H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 3rd Edition, 2012, ISBN: 9780070702066.

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4th Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.
- 2. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.
- 3. David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2nd Edition, 2006, ISBN 81-203-2360-2.
- 4. A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1st Edition, 2015, ISBN: 9789332556065.

MICROCONTROLLER

Course Code : 18EC46	CIE Marks : 40
Lecture Hours/Week : 03	SEE Marks : 60
Total Number of Lecture Hours : 40 (8 Hours / Modu	le) Exam Hours:03
CREDITS-03	

Course Learning Objectives: This course will enable students to:

- Understand the difference between a Microprocessor and a Microcontroller and embedded microcontrollers.
- Familiarize the basic architecture of 8051 microcontroller.
- Program 8051 microprocessor using Assembly Level Language and C.
- Understand the interrupt system of 8051 and the use of interrupts.
- Understand the operation and use of inbuilt Timers/Counters and Serial port of 8051.
- Interface 8051 to external memory and I/O devices using its I/O ports.

Module-1

8051 Microcontroller: Microprocessor vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture- Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

L1, L2

Module -2

8051 Instruction Set: Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples (without loops) to use these instructions.

L1, L2

Module-3

8051 Stack, I/O Port Interfacing and Programming: 8051 Stack, Stack and Subroutine instructions. Assembly language program examples on subroutine and involving loops.

Interfacing simple switch and LED to I/O ports to switch on/off LED with respect to switch status. L1, L2, L3

Module -4

8051 Timers and Serial Port: 8051 Timers and Counters – Operation and Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode-2 on a port pin. 8051 Serial Communication- Basics of Serial Data Communication, RS-232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially. L1, L2, L3

Module -5

8051 Interrupts and Interfacing Applications: 8051 Interrupts. 8051 Assembly language programming to generate an external interrupt using a switch, 8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Stepper motor and their 8051 Assembly language interfacing programming.

L1, L2, L3

Course outcomes: At the end of the course, students will be able to:

- 1. Explain the difference between Microprocessors & Microcontrollers, Architecture of 8051 Microcontroller, Interfacing of 8051 to external memory and Instruction set of 8051.
- 2. Write 8051 Assembly level programs using 8051 instruction set.
- 3. Explain the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- 4. Write 8051 Assembly language programs to generate square wave on 8051 I/O port pin using interrupt and C Programme to send & receive serial data using 8051 serial port.
- 5. Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051 using 8051 I/O ports.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. "The 8051 Microcontroller and Embedded Systems using assembly and C", Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006.
- 2. "The 8051 Microcontroller", Kenneth J. Ayala, 3rd Edition, Thomson/ Cengage Learning.

- 1. "The 8051 Microcontroller Based Embedded Systems", Manish K Patel, McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. "Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, Pearson Education, 2005.
MICROCONTROLLER LABORATORY

Laboratory Code : 18ECL47	CIE Marks : 40	SEE Marks : 60
Lecture Hours/Week: 02 Hours	Tutorial (Instructions)	+ 02 Hours Laboratory
RBT Levels : L1, L2, L3 Exam Hours : 03		
CREDITS 02		

Course Learning Objectives: This laboratory course enables students to

- Understand the basics of microcontroller and its applications.
- Have in-depth knowledge of 8051 assembly language programming.
- Understand controlling the devices using C programming.
- The concepts of I/O interfacing for developing real time embedded systems.

Laboratory Experiments

I. PROGRAMMING

- 1. Data Transfer: Block Move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD-ASCII; ASCII-Decimal; Decimal ASCII; HEX - Decimal and Decimal - HEX.
- 7. Programs to generate delay, Programs using serial port and on-Chip timer/counter.

II. INTERFACING

- 1. Interface a simple toggle switch to 8051 and write an ALP to generate an interrupt which switches on an LED (i) continuously as long as switch is on and (ii) only once for a small time when the switch is turned on.
- 2. Write a C program to (i) transmit and (ii) to receive a set of characters serially by interfacing 8051 to a terminal.
- 3. Write ALPs to generate waveforms using ADC interface.
- 4. Write ALP to interface an LCD display and to display a message on it.
- 5. Write ALP to interface a Stepper Motor to 8051 to rotate the motor.
- 6. Write ALP to interface ADC-0804 and convert an analog input connected to it.

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- 1. Enhance programming skills using Assembly language and C.
- 2. Write Assembly language programs in 8051 for solving simple problems that manipulate input data using different instructions of 8051.
- 3. Interface different input and output devices to 8051 and control them using Assembly language programs.
- 4. Interface the serial devices to 8051 and do the serial transfer using C programming.
- 5. Develop applications based on Microcontroller 8051.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

DIGITAL SIGNAL PROCESSING

Course Code : 18EC52	CIE Marks : 40
Lecture Hours/Week : 03 + 2 (Tutorial)	SEE marks : 60
Total Number of Lecture Hours: 50 (10 Hrs / Module)	Exam Hours : 03
CREDITS : 04	
Course Learning Objectives: This course will enable	students to
• Understand the frequency domain sampling	and reconstruction of
discrete time signals.	
• Study the properties and the development of	efficient algorithms for
the computation of DFT.	-

- Realization of FIR and IIR filters in different structural forms.
- Learn the procedures to design of IIR filters from the analog filters using impulse invariance and bilinear transformation.
- Study the different windows used in the design of FIR filters and design appropriate filters based on the specifications.
- Understand the architecture and working of DSP processor

Module-1

Discrete Fourier Transforms (DFT): Frequency domain sampling and Reconstruction of Discrete Time Signals, The Discrete Fourier Transform, DFT as a linear transformation, Properties of the DFT: Periodicity, Linearity and Symmetry properties, Multiplication of two DFTs and Circular Convolution, Additional DFT properties.

[Text 1],

L1,L2,L3

Module-2

Linear filtering methods based on the DFT: Use of DFT in Linear Filtering, Filtering of Long data Sequences.

Fast-Fourier-Transform (FFT) algorithms: Efficient Computation of the DFT: Radix-2 FFT algorithms for the computation of DFT and IDFT-decimationin-time and decimation-in-frequency algorithms. [Text 1],

L1,L2, L3

Module-3

Design of FIR Filters: Characteristics of practical frequency –selective filters, Symmetric and Antisymmetric FIR filters, Design of Linear-phase FIR filters using windows - Rectangular, Hamming, Hanning, Bartlett windows. Design of FIR filters using frequency sampling method. Structure for FIR Systems: Direct form. Cascade form and Lattice structures. [Text1], L1, L2, L3

Module-4

IIR Filter Design: Infinite Impulse response Filter Format, Bilinear Transformation Design Method, Analog Filters using Lowpass prototype transformation, Normalized Butterworth Functions, Bilinear Transformation and Frequency Warping, Bilinear Transformation Design Procedure, Digital Butterworth Filter Design using BLT. Realization of IIR Filters in Direct form I and II.

[Text 2],

L1,L2,L3

Module-5

Digital Signal Processors: DSP Architecture, DSP Hardware Units, Fixed point format, Floating point Format, IEEE Floating point formats, Fixed point digital signal processors, Floating point processors, FIR and IIR filter implementations in Fixed point systems.

[Text 2],

L1, L2, L3

Course Outcomes: After studying this course, students will be able to:

- 1. Determine response of LTI systems using time domain and DFT techniques.
- 2. Compute DFT of real and complex discrete time signals.
- 3. Compute DFT using FFT algorithms and linear filtering approach.
- 4. Design and realize FIR and IIR digital filters.
- 5. Understand the DSP processor architecture.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60

Text Book:

- Proakis & Manolakis, "Digital Signal Processing Principles Algorithms & Applications", 4th Edition, Pearson education, New Delhi, 2007. ISBN: 81-317-1000-9.
- 2. Li Tan, Jean Jiang, "Digital Signal processing Fundamentals and Applications", Academic Press, 2013, ISBN: 978-0-12-415893.

Reference Books:

- Sanjit K Mitra, "Digital Signal Processing, A Computer Based Approach", 4th Edition, McGraw Hill Education, 2013,
- 2. Oppenheim & Schaffer, "Discrete Time Signal Processing", PHI, 2003.
- 3. D.Ganesh Rao and Vineeth P Gejji, "Digital Signal Processing" Cengage India Private Limited, 2017, ISBN: 9386858231

ELECTROMAGNETIC WAVES

Course Code	: 18EC55	CIE Marks	:40
Lecture Hours/Week	: 3	SEE Marks	:60
Total Number of Lecture I	Hours : 40 (8 Hrs / Module)	Exam Hours	:03
	CREDITS-03		

Course Learning Objectives: This course will enable students to:

- Study the different coordinate systems, Physical significance of Divergence, Curl and Gradient.
- Understand the applications of Coulomb's law and Gauss law to different charge distributions and the applications of Laplace's and Poisson's Equations to solve real time problems on capacitance of different charge distributions.
- Understand the physical significance of Biot-Savart's, Ampere's Law and Stokes' theorem for different current distributions.
- Infer the effects of magnetic forces, materials and inductance.
- Know the physical interpretation of Maxwell's equations and applications for Plane waves for their behavior in different media.
- Acquire knowledge of Poynting theorem and its application of power flow.

Module-1

Revision of Vector Calculus - (Text 1: Chapter 1)

Coulomb's Law, Electric Field Intensity and Flux density: Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Field due to Sheet of charge, Electric flux density, Numerical Problems. (Text: Chapter 2.1 to 2.5, 3.1)

L1, L2, L3

Module -2

Gauss's law and Divergence: Gauss law, Application of Gauss law to point charge, line charge, Surface charge and volume charge, Point (differential) form of Gauss law, Divergence. Maxwell's First equation (Electrostatics), Vector Operator ∇ and divergence theorem, Numerical Problems (**Text: Chapter 3.2 to 3.7**).

Energy, Potential and Conductors: Energy expended or work done in moving a point charge in an electric field, The line integral, Definition of potential difference and potential, The potential field of point charge, Potential gradient, Numerical Problems (**Text: Chapter 4.1 to 4.4 and 4.6**). Current and Current density, Continuity of current. (**Text: Chapter 5.1, 5.2**)

L1, L2, L3

Module-3

Poisson's and Laplace's Equations: Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation, Numerical problems on Laplace equation (Text: Chapter 7.1 to 7.3)

Steady Magnetic Field: Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magnetic flux and magnetic flux density, Basic concepts Scalar and Vector Magnetic Potentials, Numerical problems. (**Text: Chapter 8.1 to 8.6**)

L1, L2, L3

Module -4

Magnetic Forces: Force on a moving charge, differential current elements, Force between differential current elements, Numerical problems (Text: Chapter 9.1 to 9.3).

Magnetic Materials: Magnetization and permeability, Magnetic boundary conditions, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance and mutual reactance, Numerical problems (Text: Chapter 9.6 to 9.7).

Faraday' law of Electromagnetic Induction –Integral form and Point form, Numerical problems (Text: Chapter 10.1)

L1, L2, L3

Module -5

Maxwell's equations Continuity equation, Inconsistency of Ampere's law with continuity equation, displacement current, Conduction current, Derivation of Maxwell's equations in point form, and integral form, Maxwell's equations for different media, Numerical problems (Text: Chapter 10.2 to 10.4)

Uniform Plane Wave: Plane wave, Uniform plane wave, Derivation of plane wave equations from Maxwell's equations, Solution of wave equation for perfect dielectric, Relation between E and H, Wave propagation in free space, Solution of wave equation for sinusoidal excitation, wave propagation in any conducting media (γ , α , β , η) and good conductors, Skin effect or Depth of penetration, Poynting's theorem and wave power, Numerical problems. (Text: Chapter 12.1 to 12.4)

L1, L2, L3

Course Outcomes: After studying this course, students will be able to:

- 1. Evaluate problems on electrostatic force, electric field due to point, linear, volume charges by applying conventional methods and charge in a volume.
- 2. Apply Gauss law to evaluate Electric fields due to different charge distributions and Volume Charge distribution by using Divergence Theorem.

- 3. Determine potential and energy with respect to point charge and capacitance using Laplace equation and Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for different current configurations
- 4. Calculate magnetic force, potential energy and Magnetization with respect to magnetic materials and voltage induced in electric circuits.
- 5. Apply Maxwell's equations for time varying fields, EM waves in free space and conductors and Evaluate power associated with EM waves using Poynting theorem

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

1. W.H. Hayt and J.A. Buck, —Engineering Electromagnetics, 8th Edition, Tata McGraw-Hill, 2014, ISBN-978-93-392-0327-6.

Reference Books:

- 1. Elements of Electromagnetics Matthew N.O., Sadiku, Oxford university press, 4th Edn.
- 2. Electromagnetic Waves and Radiating systems E. C. Jordan and K.G. Balmain, PHI, 2nd Edn.
- 3. Electromagnetics- Joseph Edminister, Schaum Outline Series, McGraw Hill.
- 4. Fundamentals of Electromagnetics for Engineering N. Narayana Rao, Pearson.

DIGITAL SIGNAL PROCESSING LABORATORY

Course Code : 18ECL57	CIE Marks: 40	SEE Marks : 60
Lecture Hours/Week: 02	Hours Tutorial (Instructions) +	02 Hours Laboratory
RBT Level : L1, L2, L3 Exam Hours : 03		: 03
CREDITS-02		

Course Learning Objectives: This course will enable students to

- Simulate discrete time signals and verification of sampling theorem.
- Compute the DFT for a discrete signal and verification of its properties using MATLAB.
- Find solution to the difference equations and computation of convolution and correlation along with the verification of properties.
- Compute and display the filtering operations and compare with the theoretical values.
- Implement the DSP computations on DSP hardware and verify the result.

Laboratory Experiments

Following Experiments to be done using MATLAB / SCILAB / OCTAVE or equivalent:

- 1. Verification of sampling theorem (use interpolation function).
- 2. Linear and circular convolution of two given sequences, Commutative, distributive and associative property of convolution.
- 3. Auto and cross correlation of two sequences and verification of their properties
- 4. Solving a given difference equation.
- 5. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum (using DFT equation and verify it by built-in routine).
- 6. (i) Verification of DFT properties (like Linearity and Parseval's theorem, etc.)
 (ii) DFT computation of square pulse and Sinc function etc.

- 7. Design and implementation of Low pass and High pass FIR filter to meet the desired specifications (using different window techniques) and test the filter with an audio file. Plot the spectrum of audio signal before and after filtering.
- 8. Design and implementation of a digital IIR filter (Low pass and High pass) to meet given specifications and test with an audio file. Plot the spectrum of audio signal before and after filtering.

Following Experiments to be done using DSP kit

- 9. Obtain the Linear convolution of two sequences.
- 10. Compute Circular convolution of two sequences.
- 11. Compute the N-point DFT of a given sequence.
- 12. Determine the Impulse response of first order and second order system.
- 13. Generation of sine wave and standard test signals

Course Outcomes:

On the completion of this laboratory course, the students will be able to:

- 1. Understand the concepts of analog to digital conversion of signals and frequency domain sampling of signals.
- 2. Model the discrete time signals and systems and verify its properties and results.
- 3. Implement discrete computations using DSP processor and verify the results.
- 4. Realize the digital filters using a simulation tool and analyze the response of the filter for an audio signal.
- 5. Write programs using Matlab / Scilab/Octave to illustrate DSP concepts.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

Reference Books:

1. Vinay K Ingle, John G Proakis, Digital Signal Processing using MATLAB, Fourth Edition, Cengage India Private Limited, 2017.

EMBEDDED SYSTEMS

Course Code	:18EC62	CIE Marks : 40
Lecture Hours/Week	: 03 + 2 (Tutorial)	SEE marks : 60
Total Number of Lecture H	ours: 50 (10 Hrs / Module)	Exam Hours : 03
CREDITS : 04		

Course Learning Objectives: This course will enable students to:

- Explain the architectural features and instructions of 32 bit microcontroller -ARM Cortex M3.
- Develop Programs using the various instructions of ARM Cortex M3 and C language for different applications.
- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware software co-design and firmware design approaches.
- Explain the need of real time operating system for embedded system applications.

Module 1

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 1: Ch-1, 2, 3)

L1,L2

Module 2

ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Thumb and ARM instructions, Special instructions, Useful instructions, CMSIS, Assembly and C language Programming (Text 1: Ch-4, Ch-10.1 to 10.6)

L1,L2,L3

Module 3

Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Elements of an Embedded System (Block diagram and explanation), Differences between RISC and CISC, Harvard and Princeton, Big and Little Endian formats, Memory (ROM and RAM types), Sensors, Actuators, Optocoupler, Communication Interfaces (I2C, SPI, IrDA, Bluetooth, Wi-Fi, Zigbee only) (Text 2: All the Topics from Ch-1 and Ch-2 (Fig and explanation before 2.1) 2.1.1.6 to 2.1.1.8, 2.2 to 2.2.2.3, 2.3 to 2.3.2, 2.3.3.3, selected topics of 2.4.1 and 2.4.2 only).

L1, L2

Module 4

Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded Systems-Application and Domain specific, Hardware Software Co-Design and Program Modeling (excluding UML), Embedded firmware design and development (excluding C language). Text 2: Ch-3, Ch-4 (4.1, 4.2.1 and 4.2.2 only), Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only)

L1,L2,L3

Module 5

RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler, simulator, emulator and debugging techniques (Text 2: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Ch-12, Ch-13 (a block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only)

L1,L2,L3

Course Outcomes: After studying this course, students will be able to:

- 1. Describe the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.
- 2. Apply the knowledge gained for Programming ARM Cortex M3 for different applications.
- 3. Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- 4. Develop the hardware software co-design and firmware design approaches.
- 5. Explain the need of real time operating system for embedded system applications.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd Edition, Newnes, (Elsevier), 2010.
- 2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition.

Reference Books:

- 1. James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008, ISBN: 978-0-471-72180-2.
- Yifeng Zhu, "Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C", 2nd Ed. Man Press LLC ©2015 ISBN: 0982692633 9780982692639.
- 3. K.V.K. K Prasad, Embedded Real Time Systems, Dreamtech publications, 2003.
- 4. Rajkamal, Embedded Systems, 2nd Edition, McGraw hill Publications, 2010.

MICROWAVE and ANTENNAS

Course Code	: 18EC63	CIE Marks : 40
Lecture Hours/Week	: 03 + 2 (Tutorial)	SEE marks : 60
Total Number of Lecture He	ours: 50 (10 Hrs / Module)	Exam Hours : 03
CREDITS : 04		

Course Learning Objectives: This course will enable students to:

- Describe the microwave properties and its transmission media
- Describe microwave devices for several applications
- Understand the basics of antenna theory
- Select antennas for specific applications

Module 1

Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). **(Text 1: 9.1, 9.2.1)**

Microwave Transmission Lines: Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching.

(Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) L1,L2

Module 2

Microwave Network theory: Introduction, Symmetrical Z and Y-Parameters for reciprocal Networks, S matrix representation of Multi-Port Networks. (Text1: 6.1, 6.2, 6.3)

Microwave Passive Devices: Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2.6.4.14, 6.4.15, 6.4.16) L1,L2

Module 3

Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: 11.1, 11.2, 11.3, 11.4)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Radio Communication Link, Antenna Field Zones. (Text 3: 2.1 - 2.7, 2.9 – 2.11, 2.13) L1,L2,L3

Module 4

Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Arrays of two isotropic point sources, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing. **(Text 3: 5.1 - 5.6, 5.9, 5.13)**

Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole, Radiation Resistance of a Short Electric Dipole, Thin Linear Antenna (Field Analyses) (Tavt 2: 6.1, 6.5)

(Text 3: 6.1 - 6.5)

L1,L2,L3,L4

Module 5

Loop and Horn Antenna: Introduction, Small loop, The Loop Antenna General Case, The Loop Antenna as a special case, Radiation resistance of loops, Directivity of Circular Loop Antennas with uniform current, Horn antennas Rectangular Horn Antennas.

(Text 3: 7.1, 7.2, 7.4, 7.6, 7.7, 7.8, 7.19, 7.20)

Antenna Types: The Helix geometry, Helix modes, Practical Design considerations for the mono-filar axial mode Helical Antenna, Yagi-Uda array, Parabolic reflector (Text 3: 8.3, 8.4, 8.5, 8.8, 9.5)

L1,L2,L3

Course outcomes: At the end of the course students will be able to:

- 1. Describe the use and advantages of microwave transmission
- 2. Analyze various parameters related to microwave transmission lines and waveguides
- 3. Identify microwave devices for several applications
- 4. Analyze various antenna parameters necessary for building a RF system
- 5. Recommend various antenna configurations according to the applications.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. Microwave Engineering Annapurna Das, Sisir K Das, TMH, Publication, 2nd, 2010.
- 2. Microwave Devices and circuits- Samuel Y Liao, Pearson Education
- **3.** Antennas and Wave Propagation- John D. Krauss, Ronald J Marhefka, Ahmad S Khan, 4th Edition, McGraw Hill Education, 2013

Reference Books:

- 1. **Microwave Engineering -** David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008.
- 2. **Microwave Engineering** Sushrut Das, Oxford Higher Education, 2nd Edn, 2015
- 3. **Antennas and Wave Propagation** Harish and Sachidananda: Oxford University Press, 2007

OPERATING SYSTEM

Course Code	:18EC641	CIE Marks	:40
Lecture Hours/Week	:03	SEE Marks	:60
Total Number of Lecture Hours	: 40 (08 Hrs/module	e) Exam Hours	:03
C	REDITS-03		

Course Learning Objectives: This course will enable students to:

- Understand the services provided by an operating system.
- Explain how processes are synchronized and scheduled.
- Understand different approaches of memory management and virtual memory management.
- Describe the structure and organization of the file system
- Understand interprocess communication and deadlock situations.

Module-1

Introduction to Operating Systems

OS, Goals of an OS, Operation of an OS, Computational Structures, Resource allocation techniques, Efficiency, System Performance and User Convenience, Classes operating System, Batch processing, Multi programming, Time Sharing Systems, Real Time and distributed Operating Systems

(Topics from Sections 1.2, 1.3, 2.2 to 2.8 of Text).

L1,L2

Module-2

Process Management: OS View of Processes, PCB, Fundamental State Transitions of a process, Threads, Kernel and User level Threads, Non-preemptive scheduling- FCFS and SRN, Preemptive Scheduling- RR and LCN, Scheduling in Unix and Scheduling in Linux

(Topics from Sections 3.3, 3.3.1 to 3.3.4, 3.4, 3.4.1, 3.4.2, Selected scheduling topics from 4.2 and 4.3, 4.6, 4.7 of Text).

L1,L2,L3

Module - 3

Memory Management: Contiguous Memory allocation, Non-Contiguos Memory Allocation, Paging, Segmentation, Segmentation with paging, Virtual Memory Management, Demand Paging, VM handler, FIFO, LRU page replacement policies, Virtual memory in Unix and Linux

(Topics from Sections 5.5 to 5.9, 6.1 to 6.3 except Optimal policy and 6.3.1, 6.7,6.8 of Text).

L1,L2,L3

Module-4

File Systems: File systems and IOCS, File Operations, File Organizations,
Directory structures, File Protection, Interface between File system and IOCS,
Allocation of disk space, Implementing file access(Topics from Sections 7.1 to 7.8 of Text).L1,L2

Module-5

Message Passing and Deadlocks: Overview of Message Passing, Implementing
message passing, Mailboxes, Deadlocks, Deadlocks in resource allocation,
Handling deadlocks, Deadlock detection algorithm, Deadlock Prevention
(Topics from Sections 10.1 to 10.3, 11.1 to 11.5 of Text).L1,L2

Course Outcomes: At the end of the course, the students will be able to:

- 1. Explain the goals, structure, operation and types of operating systems.
- 2. Apply scheduling techniques to find performance factors.
- 3. Explain organization of file systems and IOCS.
- 4. Apply suitable techniques for contiguous and non-contiguous memory allocation.
- 5. Describe message passing, deadlock detection and prevention methods.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

Operating Systems – A Concept based Approach, by Dhamdhere, TMH, 2^{nd} edition.

Reference Books:

- 1. Operating Systems Concepts, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th edition,2001.
- 2. Operating System–Internals and Design System, William Stalling, Pearson Education, 4th ed, 2006.
- 3. Operating Systems Design and Implementation, Tanenbaum, TMH, 2001.

PYTHON APPLICATION PROGRAMMING

Course Code	:18EC646	CIE Marks	:40
Lecture Hours/Week	:03	SEE Marks	:60
Total Number of Lecture Hours	: 40(08 Hrs/module)	Exam Hours	:03
CF	REDITS - 03		

Course Learning Objectives: This course will enable students to

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Implement Object Oriented Programming concepts in Python
- Build Web Services, Network and Database Programs in Python.

Module – 1

Why should you learn to write programs, Variables, expressions and statements, Conditional execution, Functions,

Module-2

n Stringe Files

Iteration, Strings, Files,

Module – 3

Lists, Dictionaries, Tuples, Regular Expressions,

Module – 4

Classes and objects, Classes and functions, Classes and methods,

L1, L2, L3

Module-5

Networked programs, Using Web Services, Using databases and SQL,

L1, L2, L3

Course outcomes: The students will be able to:

- 1. Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- 2. Demonstrate proficiency in handling Strings and File Systems.
- 3. Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- 4. Interpret the concepts of Object-Oriented Programming as used in Python.
- 5. Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

L1, L2, L3

L1, L2, L3

L1, L2, L3

Question paper pattern:

- The question paper will have TEN questions.
- There will be TWO questions from each module.
- Each question will have questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1 Edition, Create Space Independent Publishing Platform, 2016 (Chapters 1 13, 15).
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Green Tea Press, 2015 (Chapters 15,16,17)

References:

- 1. Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media, 2011.ISBN-13:978-9350232873.
- 2. Wesley J Chun, "Core Python Applications Programming", 3rd Edition, Pearson Education India, 2015. ISBN-13: 978-9332555365.
- 3. Reema Thareja, "Python Programming using problem solving approach", Oxford university press, 2017

COMMUNICATION LABORATORY

Course Code : 18ECL67	CIE Marks : 40	SEE Marks : 60
Lecture Hours/Week: 02 H	Hours Tutorial (Instructions) +	02 Hours Laboratory
RBT Level: L1, L2, L3	Exam Hours	: 03
CREDITS-02		

Course Learning Objectives: This course will enable students to:

- Design and test the communication circuits for different analog modulation schemes.
- Design and demonstrate the digital modulation techniques
- Demonstrate and measure the wave propagation in microstrip antennas
- Characteristics of microstrip devices and measurement of its parameters.
- Understand the probability of error computations of coherent digital modulation schemes.

Laboratory Experiments

PART-A: Expt. 1 to Expt. 5 have to be performed using discrete components.

- 1. Amplitude Modulation and Demodulation: i) Standard AM, ii)DSBSC (LM741 and LF398 ICs can be used)
- 2. Frequency modulation and demodulation (IC 8038/2206 can be used)
- 3. Pulse sampling, flat top sampling and reconstruction
- 4. Time Division Multiplexing and Demultiplexing of two bandlimited signals.
- 5. FSK and PSK generation and detection
- 6. Measurement of frequency, guide wavelength, power, VSWR and attenuation in microwave test bench.
- 7. Obtain the Radiation Pattern and Measurement of directivity and gain of microstrip dipole and Yagi antennas.
- 8. Determination of
 - a. Coupling and isolation characteristics of microstrip directional coupler.
 - b. Resonance characteristics of microstrip ring resonator and computation of dielectric constant of the substrate.
 - c. Power division and isolation of microstrip power divider.

PART-B: Simulation Experiments using SCILAB/MATLAB/Simulink or LabVIEW

- 1. To Simulate NRZ, RZ, half-sinusoid & raised cosine pulses and generate eye diagram for binary polar signaling.
- 2. Pulse code modulation and demodulation system.

- 3. Computations of the Probability of bit error for coherent binary ASK, FSK and PSK for an AWGN Channel and compare them with their performance curves.
- 4. Digital Modulation Schemes i) DPSK Transmitter and Receiver, ii) QPSK Transmitter and Receiver.

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- 1. Design and test circuits for analog modulation and demodulation schemes viz., AM, FM, etc.
- 2. Determine the characteristics and response of microwave waveguide.
- 3. Determine characteristics of microstrip antennas and devices & compute the parameters associated with it.
- 4. Design and test the digital and analog modulation circuits and display the waveforms.
- 5. Simulate the digital modulation systems and compare the error performance of basic digital modulation schemes.

Conduct of Practical Examination:

- All laboratory experiments are to be considered for practical examination.
- For examination one question from **PART-A** and one question from **PART-B** or only one question from **PART-B** experiments based on the complexity, to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 – 22)

III Semester

Basic Signal Processing			
Course Code	21EC33	CIE Marks	50
Teaching Hours/Week (L: T: P: S)	(3:0:2:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 13 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course objectives: This course will enable students to:

Preparation: To prepare students with fundamental knowledge/ overview in the field of Signal Processing with Familiarization with the concept of Vector spaces and orthogonality with a qualitative insight into applications in communications.

Core Competence: To equip students with a basic foundation of Signal Processing by delivering the basics of quantitative parameters for Matrices & Linear Transformations, the mathematical description of discrete time signals and systems, analyzing the signals in time domain using convolution sum, classifying signals into different categories based on their properties, analyzing Linear Time Invariant (LTI) systems in time and transform domains

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- Lecture method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- Show Video/animation films to explain the different concepts of Linear Algebra & Signal Processing.
- Encourage collaborative (Group) Learning in the class.
- Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking.
- Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- Topics will be introduced in a multiple representation.
- Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- Adopt Flipped class technique by sharing the materials / Sample Videos prior to the class and have discussions on the that topic in the succeeding classes.
- Give Programming Assignments.

Module-1

Vector Spaces: Vector spaces and Null subspaces, Rank and Row reduced form, Independence, Basis and dimension, Dimensions of the four subspaces, Rank-Nullity Theorem, Linear Transformations Orthogonality: Orthogonal Vectors and Subspaces, Projections and Least squares, Orthogonal Bases and Gram-Schmidt Orthogonalization procedure

(Refer Chapters 2 and 3 of Text 1)

Teaching-	Chalk and Talk, YouTube videos, Flipped Class Technique, Programming assignments
Learning Process	RBT Level: L1, L2, L3

	Module-2	
Eigen values Matrices (Posit (Refer Chapte	and Eigen vectors: Review of Eigen values and Diagonalization of a Matrix, Special ive Definite, Symmetric) and their properties, Singular Value Decomposition. r 5, Text 1)	
Teaching- Learning Process	Chalk and Talk, YouTube videos, Flipped Class Technique, Programming assignments RBT Level: L1, L2, L3	
	Module-3	
Introduction a signals/Function	and Classification of signals: Definition of signal and systems with examples, Elementary ons: Exponential, sinusoidal, step, impulse and ramp functions	
Basic Operation time reversal. E	ons on signals: Amplitude scaling, addition, multiplication, time scaling, time shift and Expression of triangular, rectangular and other waveforms in terms of elementary signals	
System Classi static-dynamic,	fication and properties: Linear-nonlinear, Time variant -invariant, causal-noncausal, stable-unstable, invertible.	
(Text 2) [Only	for Discrete Signals & Systems]	
Teaching-	Chalk and Talk, YouTube videos, Flipped Class Technique, Programming assignments	
Learning Process	RBT Level: L1, L2, L3	
	Module-4	
Time domain representation of LTI System: Impulse response, convolution sum. Computation of convolution sum using graphical method for unit step and unit step, unit step and exponential, exponential and exponential unit step and rectangular and rectangular.		
LTI system Pr Stable, Invertib	operties in terms of impulse response: System interconnection, Memory less, Causal, le and Deconvolution and step response	
(Text 2) [Only	for Discrete Signals & Systems]	
Teaching- Learning Process	Chalk and Talk, YouTube videos, Flipped Class Technique, Programming assignments RBT Level: L1, L2, L3	
Module-5		
The Z-Transforms: Z transform, properties of the region of convergence, properties of the Z-transform, Inverse Z-transform by partial fraction, Causality and stability, Transform analysis of LTI systems.		
Teaching-	Chalk and Talk YouTube videos, Flipped Class Technique, Programming assignments	
Learning Process	RBT Level: L1, L2, L3	
PRACTICAL COMPONENT OF IPCC		
SI.No	Experiments	

Sl.No	Experiments		
1	a. Program to create and modify a vector (array).b. Program to create and modify a matrix.		
2	Programs on basic operations on matrix.		
3	Program to solve system of linear equations.		
4	Program for Gram-Schmidt orthogonalization.		
5	Program to find Eigen value and Eigen vector.		
6	Program to find Singular value decomposition.		

7	Program to generate discrete waveforms.	
8	Program to perform basic operation on signals.	
9	Program to perform convolution of two given sequences.	
10	a. Program to perform verification of commutative property of convolution.	
	b. Program to perform verification of distributive property of convolution.	
	c. Program to perform verification of associative property of convolution.	
11	Program to compute step response from the given impulse response.	
12	Programs to find Z-transform and inverse Z-transform of a sequence.	

Course outcomes (Course Skill Set)

At the end of the course the student will be able to :

- 1. Understand the basics of Linear Algebra
- 2. Analyse different types of signals and systems
- 3. Analyse the properties of discrete-time signals & systems
- 4. Analyse discrete time signals & systems using Z transforms

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10^{th} week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Programming assignment at the end of 9th week of the semester, which can be implemented using programming languages like C++/Python/Java/Scilab

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component.

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured out of 100 will be scaled down to 50 marks.

Suggested Learning Resources:

Text Books

- 1. Gilbert Strang, "Linear Algebra and its Applications", Cengage Learning, 4th Edition, 2006, ISBN 97809802327
- 2. Simon Haykin and Barry Van Veen, "Signals and Systems", 2nd Edition, 2008, Wiley India. ISBN 9971-51-239-4.

Reference Books:

- 1. **Michael Roberts**, "Fundamentals of Signals & Systems", 2nd edition, Tata McGraw-Hill, 2010, ISBN 978-0-07-070221-9.
- 2. Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2"" edition, 1997. Indian Reprint 2002.
- 3. H P Hsu, R Ranjan, "Signals and Systems", Schaum's outlines, TMH, 2006.
- 4. **B P Lathi**, "Linear Systems and Signals", Oxford University Press, 2005.
- 5. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine.
- 6. Seymour Lipschutz, Marc Lipson, "Schaums Easy Outline of Linear Algebra", 2020.

Web links and Video Lectures (e-Resources):

Video lectures on Signals and Systems by Alan V Oppenheim

Lecture 1, Introduction | MIT RES.6.007 Signals and Systems, Spring 2011 - YouTube

Lecture 2, Signals and Systems: Part 1 | MIT RES.6.007 Signals and Systems, Spring 2011 - YouTube NPTEL video lectures signals and system:

https://www.youtube.com/watch?v=7Z3LE5uM-6Y&list=PLbMVogVj5nJQQZbah2uRZIRZ_9kfoqZyx

Video lectures on Linear Algebra by Gilbert Strang

https://www.youtube.com/watch?v=ZK3O402wf1c&list=PL49CF3715CB9EF31D&index=1

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve programming skills

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 – 22)

III Semester

Analog Electronic Circuits			
Course Code	21EC34	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	3	Exam Hours	3

Course objectives:This course will enable students to

- Explain various BJT parameters, connections and configurations.
- Design and demonstrate the diode circuits and transistor amplifiers.
- Explain various types of FET biasing and demonstrate the use of FET amplifiers.
- Analyze Power amplifier circuits in different modes of operation.
- Construct Feedback and Oscillator circuits using FET.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1.Lecture method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain evolution of communication technologies.
- 3. Encourage collaborative (Group) Learning in the class
- 4.Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking
- 5.Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6.Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 7.Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

BJT Biasing: Biasing in BJT amplifier circuits: The Classical Discrete circuit bias (Voltage-divider bias), Biasing using a collector to base feedback resistor.

Small signal operation and Models: Collector current and transconductance, Base current and input resistance, Emitter current and input resistance, voltage gain, Separating the signal and the DC quantities, The hybrid Π model, The T model.

MOSFETs: Biasing in MOS amplifier circuits: Fixing VGS, Fixing VG, Drain to Gate feedback resistor.

Small signal operation and modeling: The DC bias point, signal current in drain, voltage gain, small signal equivalent circuit models, transconductance, The T equivalent circuit model.

[Text 1: 3.5(3.5.1, 3.5.3), 3.6(3.6.1 to 3.6.7), 4.5(4.5.1, 4.5.2, 4.5.3), 4.6(4.6.1 to 4.6.7)]

Teaching-	Chalk and talk method, Power Point Presentation.	
Learning	Self-study topics: Basic BJT Amplifier Configurations- Design of Common Emitter and	
Process	Common collector amplifier circuits.	
	RBT Level: L1, L2, L3	

Module-2

MOSFET Amplifier configuration: Basic configurations, characterizing amplifiers, CS amplifier with and without source resistance RS, Source follower.

MOSFET internal capacitances and High frequency model: The gate capacitive effect, Junction capacitances, High frequency model.

Frequency response of the CS amplifier: The three frequency bands, high frequency response, Low frequency response.

01.10.2022	
Oscillators	: FET based Phase shift oscillator, LC and Crystal Oscillators (no derivation)
Teaching-	$(4.7.1 \ 10 \ 4.7.4, 4.7.0) \ 4.0(4.0.1, 4.0.2, 4.0.5), 4.7, 12.2.2, 12.3.1, 12,3.2]$
Learning	Self-study topics: Discrete Circuit MOS Amplifier – The common source amplifier and the
Process	source follower.
	RBT Level: L1, L2, L3
	Module-3
Feedback Feedback (Qualitative	Amplifier: General feedback structure, Properties of negative feedback, The Four Basic Topologies, The series-shunt, series-series, shunt-shunt and shunt-series amplifiers e Analysis).
Output Sta stage, Class Class AB ou	ges and Power Amplifiers: Introduction, Classification of output stages, Class A output B output stage: Transfer Characteristics, Power Dissipation, Power Conversion efficiency, Itput stage, Class C tuned Amplifier.
[Text 1: 7.1,	7.2, 7.3, 7.4.1, 7.5.1, 7.6 (7.6.1 to 7.6.3), 13.1, 13.2, 13.3(13.3.1, 13.3.2, 13.3.3, 13.4, 13.7)]
Teaching-	Chalk and talk method, Power Point Presentation.
Learning	Self-study topics: Class D power amplifier.
Process	RBT Level: L1, L2, L3
	Module-4
Op-Amp C Successive Filters, Firs reject filters	ircuits: Op-amp DC and AC Amplifiers, DAC - Weighted resistor and R-2R ladder, ADC- approximation type, Small Signal half wave rectifier, Absolute value output circuit, Active st and second order low-pass and high-pass Butterworth filters, Band-pass filters, Band s.
555 Timer	
[1ext 2: 6.2, 9.4.3(a)]	8.11(8.11.1a, 8.11.1b), 8.11.2a, 8.12.2,8.13 /.2, /.3, /.4, /.5, /.6, /.8, /.9, 9.4.1, 9.4.1(a), 9.4.3,
Teaching-	Chalk and talk method, Power Point Presentation.
Learning Process	Self-study topics: Clippers and Clampers, Peak detector, Sample and hold circuit.
	Module-5
Overview of Application	of Power Electronic Systems: Power Electronic Systems, Power Electronic Converters and s.
Thyristors Turn-off Mo considerati	: Static Anode-Cathode characteristics and Gate characteristics of SCR, Turn-ON methods, echanism, Turn-OFF Methods: Natural and Forced Commutation – Class A without design on.
Gate Trigg Transistor:	ger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit, Unijunction Basic operation and UJT Firing Circuit.
[Text 3: 1.3	, 1.5,1.6, 2.2,2.3,2.4,2.6, 2.7,2.9, 2.10,3.2,3.5.1, 3.5.2, 3.6.1, 3.6.3,3.6.4]
Teaching-	Chalk and talk method, Power Point Presentation.
Learning Process	Self-study topics: Basic Construction, working and applications of DIAC, TRIAC, IGBT, GTO.
Course Oute	KBI Level: L1, L2, L3
At the end of 1. Unders	the course the student will be able to : stand the characteristics of BJTs and FETs for switching and amplifier circuits.

- 2. Design and analyze FET amplifiers and oscillators with different circuit configurations and biasing conditions.
- 3. Understand the feedback topologies and approximations in the design of amplifiers and oscillators.
- 4. Design of circuits using linear ICs for wide range applications such as ADC, DAC, filters and timers.
- 5. Understand the power electronic device components and its functions for basic power electronic circuits.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored out of 100 shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

- 1. Microelectronic Circuits, Theory and Applications, Adel S Sedra, Kenneth C Smith, 6thEdition, Oxford, 2015.ISBN:978-0-19-808913-1
- Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, 4thEdition, Pearson Education, 2018. ISBN: 978-93-325-4991-3
- 3. MD Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897'

Web links and Video Lectures (e-Resources):

- Integrated Electronics: Analog and Digital Circuits and Systems, Jacob Millman, Christos C. Halkias, McGraw-Hill, 2015.
- Electronic Devices and Circuit, Boylestad & Nashelsky, Eleventh Edition, Pearson, January 2015.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 – 22)

III Semester

Analog and Digital Electronics Lab				
Course Code		21ECL35	CIE Marks	50
Teaching Hours/Week (L:T:P: S)		0:0:2:0	SEE Marks	50
Credits		1	Exam Hours	3
Course objectives:				
This laboratory course enable	es students	to		
Understand the electron	nic circuit s	chematic and its working		
Realize and test amplifi	er and oscil	lator circuits for the given	specifications	
 Realize the opamp circu precision rectifiers. 	lits for the a	applications such as DAC, in	nplement mathematica	al functions and
 Study the static charact 	eristics of S	CR and test the RC triggeri	ng circuit.	
• Design and test the com	binational	and sequential logic circuit	s for their functionaliti	.es.
• Use the suitable ICs bas	ed on the sj	pecifications and functions	•	
Sl.No.		Experiments		
1 Design and set up the	BJT commo	on emitter voltage amplifie	er with and without fee	dback and
determine the gain- b	andwidth p	product, input and output in	mpedances.	
2 Design and set-up BJ	ſ/FET			
i) Colpitts Oscillate	i) Colpitts Oscillator, ii) Crystal Oscillator and iii) RC Phase shift oscillator			
3 Design and set up the	Design and set up the circuits using opamp:			
i) Adder, ii) Integr	i) Adder, ii) Integrator, iii) Differentiator and iv) Comparator			
4 Obtain the static char	Obtain the static characteristics of SCR and test SCR Controlled HWR and FWR using RC triggering			
E Desiment involument				
5 Design and implement	Design and implement			
(a) Hall Adder & F	(a) Half Adder & Full Adder using basic gates and NAND gates,			
(D) Hall Subtracto	(b) Hall subtractor & Full subtractor using NAND gates,			
		IC/4131(8:1M0A).		
6 Realize	,		20)	
(i) Binary to Gra	y coae conv s-3 code cor	version & vice-versa (IC/41	.39),	
7 a) Realize using NAN	a) Realize using NAND Gates:			
i) Master-Slave J	i) Master-Slave IK Flin-Flon, ii) D Flin-Flon and iii) T Flin-Flon			
b) Realize the shift re	b) Realize the shift registers using IC7474/7495			
(i) SISO (ii) SIPO	_ (iii) PISO (i [,]	v) PIPO (v) Ring counter ar	nd (vi) Johnson counter	
8 Realize				
a) Design Mod –	N Synchron	ous Up Counter & Down Co	ounter using 7476 JK F	lip-flop
b) Mod-N Counte	r using IC74	490 / 7476	-	
c) Synchronous c	ounter usir	ng IC74192		

0	
9	Design 4-bit R – 2R Op-Amp Digital to Analog Converter
	(i) for a 4-bit binary input using toggle switches(ii) by generating digital inputs using mod-16
10	Pseudorandom sequence generator using IC7495
11	Test the precision rectifiers using opamp: i) Half wave rectifier ii) Full wave rectifier
12	Design and test Monostable and Astable Multivibrator using 555 Timer

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- 1. Design and analyze the BJT/FET amplifier and oscillator circuits.
- 2. Design and test Opamp circuits to realize the mathematical computations, DAC and precision rectifiers.
- 3. Design and test the combinational logic circuits for the given specifications.
- 4. Test the sequential logic circuits for the given functionality.
- 5. Demonstrate the basic electronic circuit experiments using SCR and 555 timer.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Fundamentals of Electronic Devices and Circuits Lab Manual, David A Bell, 5th Edition, 2009, Oxford University Press.
- 2. Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, 4th Edition, Pearson Education, 2018. ISBN: 978-93-325-4991-3.
- 3. Fundamentals of Logic Design, Charles H Roth Jr., Larry L Kinney, Cengage Learning, 7th Edition.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 – 22)

IV Semester

Digital Signal Processing			
Course Code	21EC42	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course objectives:

- 1. **Preparation:** To prepare students with fundamental knowledge/ overview in the field of Digital Signal Processing
- 2. **Core Competence:** To equip students with a basic foundation of Signal Processing by delivering the basics of Discrete Fourier Transforms & their properties, design of filters and overview of digital signal processors

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the different concepts of Digital Signal Processing
- 3. Encourage collaborative (Group) Learning in the class
- 4. Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in a multiple representation.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Adopt Flipped class technique by sharing the materials / Sample Videos prior to the class and have discussions on the that topic in the succeeding classes
- 10. Give Programming Assignments

Module-1

Discrete Fourier Transforms (DFT): Frequency domain sampling and Reconstruction of Discrete Time Signals, The Discrete Fourier Transform, DFT as a linear transformation, Properties of the DFT: Periodicity, Linearity and Symmetry properties, Multiplication of two DFTs and Circular Convolution **[Text 1]**

Teaching-Learning	Chalk and Talk, YouTube videos, Programming assignments
Process	RBT Level: L1, L2, L3

Module-2

Additional DFT Properties, Linear filtering methods based on the DFT: Use of DFT in Linear Filtering, Filtering of Long data Sequences. Fast-Fourier-Transform (FFT) algorithms: Efficient Computation of the DFT: Radix-2 FFT algorithms for the computation of DFT and IDFT decimation in-time [Text 1]

Teaching-Learning Process	Chalk and Talk, YouTube videos, Programming assignments RBT Level: L1, L2, L3		
	Module-3		
Design of FIR Filters: Characteristics of practical frequency-selective filters, Symmetric and Anti- symmetric FIR filters, Design of Linear-phase FIR (low pass and High pass) filters using windows - Rectangular, Hamming, Hanning, Bartlett windows. Structure for FIR Systems: Direct form, Cascade form and Lattice structures [Text1]			
Teaching-Learning Process	Chalk and Talk, YouTube videos, Programming assignments RBT Level: L1, L2, L3		
	Module-4		
IIR Filter Design: Infinite Impulse response Filter Format, Bilinear Transformation Design Method, Analog Filters using Low pass prototype transformation, Normalized Butterworth Functions, Bilinear Transformation and Frequency Warping, Bilinear Transformation Design Procedure, Digital Butterworth (Lowpass and Highpass) Filter Design using BLT. Realization of IIR Filters in Direct form I and II [Text 2]			
Teaching-Learning Process	Chalk and Talk, YouTube videos, Programming assignments RBT Level: L1, L2, L3		
	Module-5		
Digital Signal Processors : DSP Architecture, DSP Hardware Units, Fixed point format, Floating point Format, IEEE Floating point formats, Fixed point digital signal processors, FIR and IIR filter implementations in Fixed point systems. [Text 2]			
Teaching-Learning Process	Chalk and Talk, YouTube videos, Programming assignments RBT Level: L1, L2, L3		
	PRACTICAL COMPONENT OF IPCC		
List of Programs to be im C++/Python/Java/Scilab	plemented & executed using any programming languages like / MATLAB/CC Studio (but not limited to)		
 Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum. Computation of circular convolution of two given sequences and verification of commutative, distributive and associative property of convolution. Computation of linear convolution of two sequences using DFT and IDFT. Computation of circular convolution of two given sequences using DFT and IDFT Verification of Linearity property, circular time shift property & circular frequency shift property of DFT. Verification of Parseval's theorem Design and implementation of IIR (Butterworth) low pass filter to meet given specifications. Design and implementation of low pass FIR filter to meet given specifications. Design and implementation of high pass FIR filter to meet given specifications. Design and implementation of high pass FIR filter to meet given specifications. To compute N- Point DFT of a given sequence using DSK 6713 simulator To compute linear convolution of two given sequences using DSK 6713 simulator 			
Course outcomes (Course Skill Set)			
 At the end of the course the student will be able to: Determine response of LTI systems using time domain and DFT techniques Compute DFT of real and complex discrete time signals Compute DFT using FFT algorithms Design FIR and IIR Digital Filters Design of Digital Filters using DSP processor 			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Programming assignment at the end of 9th week of the semester, which can be implemented using programming languages like C++/Python/Java/Scilab

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component.

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Text Books:

- 1. Proakis & Manolakis, "Digital Signal Processing Principles Algorithms & Applications", 4th Edition, Pearson education, New Delhi, 2007. ISBN: 81-317-1000-9.
- 2. Li Tan, Jean Jiang, "Digital Signal processing Fundamentals and Applications", Academic Press, 2013, ISBN: 978-0-12-415893.

Reference Books:

- 1. Sanjit K Mitra, "Digital Signal Processing, A Computer Based Approach", 4th Edition, McGraw Hill Education, 2013,
- 2. Oppenheim & Schaffer, "Discrete Time Signal Processing", PHI, 2003.
- 3. D Ganesh Rao and Vineeth P Gejji, "Digital Signal Processing" Cengage India Private Limited, 2017, ISBN: 9386858231

Web links and Video Lectures (e-Resources):

By Prof. S. C. Dutta Roy, IIT Delhi

https://nptel.ac.in/courses/117102060

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve programming skills
IV Semester

Circuits & Controls			
Course Code	21EC43	CIE Marks	50
Teaching Hours/Week (L: T: P: S)	(3:0:2:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 12 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course objectives: This course will enable students to:

- 1. Apply mesh and nodal techniques to solve an electrical network.
- 2. Solve different problems related to Electrical circuits using Network Theorems and Two port network.
- 3. Familiarize with the use of Laplace transforms to solve network problems.
- 4. Understand basics of control systems and design mathematical models using block diagram reduction, SFG, etc.
- 5. Understand Time domain and Frequency domain analysis.
- 6. Familiarize with the State Space Model of the system.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- Lecture method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- Show Video/animation films to explain the different concepts of Linear Algebra & Signal Processing.
- Encourage collaborative (Group) Learning in the class .
- Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking.
- Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- Topics will be introduced in a multiple representation.
- Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- Adopt Flipped class technique by sharing the materials / Sample Videos prior to the class and have discussions on the that topic in the succeeding classes.
- Give Programming Assignments.

	Module-1		
Basic concepts and network theorems Types of Sources, Loop analysis, Nodal analysis with independent DC and AC Excitations. (Textbook 1: 2.3, 4.1, 4.2, 4.3, 4.4, 10.6) Super position theorem, Thevenin's theorem, Norton's Theorem, Maximum Power transfer Theorem. (Textbook 2: 9.2, 9.4, 9.5, 9.7)			
Teaching-Learning Process	Chalk and Talk, YouTube videos, Demonstrate the concepts using circuits RBT Level: L1, L2, L3		

Module-2			
Two port networks : Short- circuit Admittance parameters, Open- circuit Impedance parameters, Transmission parameters, Hybrid parameters (Textbook 3: 11.1, 11.2, 11.3, 11.4, 11.5)			
Laplace transform a transform, Initial valu	and its e and fi	Applications : Step Ramp, Impulse, Solution of networks using Laplace nal value theorem (Textbook 3: 7.1, 7.2, 7.4, 7.7, 8.4)	
Teaching-Learning	Feaching-Learning Chalk and Talk		
Process	RBT L	.evel: L1, L2, L3	
		Module-3	
Basic Concepts and r Types of control syst electrical systems), In (Textbook 4: Chapter	tems, ef troduct 1.1, 2.2	entation: ffect of feedback systems, differential equation of physical systems (only ion to block diagrams, transfer functions, Signal Flow Graphs , 2.4, 2.5, 2.6)	
Teaching-Learning		Chalk and Talk, YouTube videos	
Process		RBT Level: L1, L2, L3	
		Module-4	
Time Response analysis : Time response of first order systems. Time response of second order systems, time response specifications of second order systems (Textbook 4: Chapter 5.3, 5.4) Stability Analysis: Concepts of stability necessary condition for stability, Routh stability criterion, relative stability Analysis (Textbook 4: Chapter 5.3, 5.4, 6.1, 6.2, 6.4, 6.5)			
Teaching-Learning		Chalk and Talk, Any software tool to show time response	
Process		RBT Level: L1, L2, L3	
Module-5			
Root locus : Introduction the root locus concepts, construction of root loci (Textbook 4: 7.1, 7.2, 7.3)			
Frequency Domain analysis and stability : Correlation between time and frequency response and Bode plots (Textbook 4: 8.1, 8.2, 8.4)			
State Variable Analysis: Introduction to state variable analysis: Concepts of state, state variable and state models. State model for Linear continuous –Time systems, solution of state equations.			
(Textbook 4: 12.2, 12.3, 12.6)			
Teaching-Learning		Chalk and Talk, Any software tool to plot Root locus, Bode plot	
Process		RBT Level: L1, L2, L3	
PRACTICAL COMPONENT OF IPCC			
Using suitable hardware and simulation software, demonstrate the operation of the following circuits:			

Using s	Using suitable naruware and simulation software, demonstrate the operation of the following circuits:		
Sl.No	Experiments		
1	Verification of Superposition theorem		
2	Verification of Thevenin's theorem		
3	Speed torque characteristics of i)AC Servomotor ii) DC Servomotors		
4	Determination of time response specification of a second order Under damped System, for different damping factors.		
5	Determination of frequency response of a second order System		
6	Determination of frequency response of a lead lag compensator		
7	Using Suitable simulation package study of speed control of DC motor using i) Armature control ii) Field control		

8	Using suitable simulation package, draw Root locus & Bode plot of the given transfer function.		
	Demonstration Experiments (For CIE only, not for SEE)		
9	Using suitable simulation package, obtain the time response from state model of a system.		
10	Implementation of PI, PD Controllers.		
11	Implement a PID Controller and hence realize an Error Detector.		
12	Demonstrate the effect of PI, PD and PID controller on the system response.		

Course Outcomes

At the end of the course the student will be able to:

- 1. Analyse and solve Electric circuit, by applying, loop analysis, Nodal analysis and by applying network Theorems.
- 2. Evaluate two port parameters of a network and Apply Laplace transforms to solve electric networks.
- 3. Deduce transfer function of a given physical system, from differential equation representation or Block Diagram representation and SFG representation.
- 4. Calculate time response specifications and analyse the stability of the system.
- 5. Draw and analyse the effect of gain on system behaviour using root loci.
- 6. Perform frequency response Analysis and find the stability of the system.
- 7. Represent State model of the system and find the time response of the system.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and

scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component.

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured out of 100 shall be reduced proportionally to 50.

Suggested Learning Resources:

Text Books

- 1. Engineering circuit analysis, William H Hayt, Jr, Jack E Kemmerly, Steven M Durbin, Mc Graw Hill Education, Indian Edition 8e.
- 2. Networks and Systems, D Roy Choudhury, New age international Publishers, second edition.
- 3. Network Analysis, M E Van Valkenburg, Pearson, 3e.

4. Control Systems Engineering, I J Nagrath, M. Gopal, New age international Publishers, Fifth edition.

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/108106098
- <u>https://nptel.ac.in/courses/108102042</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve programming skills

IV Semester

Communication Laboratory I				
Course	Code	21ECL46	CIE Marks	50
Teachi	ng Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50
Credits	5	1	Exam Hours	3
Course	e objectives:		•	
This la	boratory course enables stude	ents to		
• 1	Model an analog communication	on system signal transmission and	reception.	1
	Realize the electronic circuits t	o perform analog and pulse modul	lations and demodu	llations.
	Inderstand the process of PCN	and delta modulations	III Delore and alter	sampning.
• [Jnderstand the PLL operation.			
Sl.No.		Experiments		
1	Design of active second orde	r Butterworth low pass and high p	ass filters.	
2	Amplitude Modulation and	Demodulation of		
	(a) Standard AM and (b) DSBSC (LM741 and LF398 ICs can be used)			
3	3 Frequency modulation and demodulation			
4	Design and test Time Division Multiplexing and Demultiplexing of two bandlimited signals.			
5	5 Design and test			
	i) Pulse sampling, flat top sampling and reconstruction.			
	ii) Pulse amplitude modulation and demodulation.			
6	Design and test BJT/FET Mixer			
7	Pulse Code Modulation and demodulation			
8	Phase locked loop Synthesis			
9	9 Illustration of			
	(a) AM modulation and demodulation and display the signal and its spectrum.			
	(b) DSB-SC modulation and demodulation and display the signal and its spectrum.			
	(Use MATLAB/SCILAB)			
10	Illustration of FM modulation and demodulation and display the signal and its spectrum. (Use MATLAB/SCILAB)			
11	Illustrate the process of sampling and reconstruction of low pass signals. Display the signals and its spectrums of both analog and sampled signals. (Use MATLAB/SCILAB).			
12	Illustration of Delta Modulat (Use MATLAB/SCILAB)	ion and the effects of step size sele	ction in the design	of DM encoder.

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- 1. Demonstrate the AM and FM modulation and demodulation by representing the signals in time and frequency domain.
- 2. Design and test the sampling, Multiplexing and PAM with relevant circuits.
- 3. Demonstrate the basic circuitry and operations used in AM and FM receivers.
- 4. Illustrate the operation of PCM and delta modulations for different input conditions.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by

examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners).

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours.

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Louis E Frenzel, Principles of Electronic Communication Systems, McGraw Hill Education (India) Private Limited, 2016.
- 2. B P Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University Press, 2015.

V Semester

Digital Communication				
Course Code	21EC51	CIE Marks	50	
Teaching Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	3	Exam Hours	3	

Course objectives:

- Understand the concept of signal processing of digital data and signal conversion to symbols at the transmitter and receiver.
- Compute performance metrics and parameters for symbol processing and recovery in ideal and corrupted channel conditions.
- Understand the principles of spread spectrum communications.
- Understand the basic principles of information theory and various source coding techniques.
- Build a comprehensive knowledge about various Source and Channel Coding techniques.
- Discuss the different types of errors and error detection and controlling codes used in the communication channel.
- Understand the concepts of convolution codes and analyze the code words using time domain and transform domain approach.

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Arrange visits to nearby PSUs such as BHEL, BEL, ISRO, etc., and small-scale communication industries.
- 3. Show Video/animation films to explain the functioning of various modulation techniques, Channel, and source coding.
- 4. Encourage collaborative (Group) Learning in the class
- 5. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 6. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize & analyze information rather than simply recall it.
- 7. Topics will be introduced in multiple representations.
- 8. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 9. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Digital Modulation Techniques: Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M–ary PSK, M–ary QAM. Frequency shift keying techniques using Coherent detection: BFSK generation, detection and error probability. Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation).

Teaching-	Chalk and talk method, Simulation of modulation techniques, Power Point Presentation,
Learning	YouTube videos Animation of BPSK, QPSK, BFSK and DPSK.
Process	Problems on Generation and detection of DPSK, QPSK.
1100000	Self-study topic: Minimum shift keying and Non-coherent BFSK
	RBT Level: L1, L2, L3

Module-2			
Signalling Communication through Band Limited AWGN Channels:			
Signalling o	Signalling over AWGN Channels- Introduction, Geometric representation of signals, Gram- Schmidt		
Orthogonaliz	Orthogonalization procedure, Conversion of the continuous AWGN channel into a vector channel		
(without sta	atistical characterization), Optimum receivers using coherent detection: ML Decoding,		
Correlation r	eceiver, matched filter receiver.		
Signal desig	gn for Band limited Channels: Design of band limited signals for zero lSI-The Nyquist		
Criterion (st	atement only), Design of band limited signals with controlled ISI-Partial Response signals,		
Probability o	f error for detection of Digital PAM: Symbol-by-Symbol detection of data with controlled ISI.		
Teaching-	Chalk & talk method, PowerPoint Presentation, YouTube videos		
Learning	RBT Level: L1, L2, L3		
FIUCESS	Madula 2		
	Module-3		
Principles o Digital Comr narrowband Spectrum Sig 95.	f Spread Spectrum : Spread Spectrum Communication Systems: Model of a Spread Spectrum nunication System, Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a Interference, Probability of error (statement only), Some applications of DS Spread gnals, Generation of PN Sequences, Frequency Hopped Spread Spectrum, CDMA based on IS-		
Teaching- Learning Process	Chalk & talk method, Seminar about security issues in communication systems RBT Level: L1, L2, L3		
	Module-4		
Introductio	n to Information Theory: Measure of information, Average information content of symbols		
in long indep	pendent sequences.		
Source Codi Algorithm, H	ng: Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon-Fano Encoding uffman coding.		
Error Contr Types of Erro	col Coding: Introduction, Examples of Error control coding, methods of Controlling Errors, ors, types of Codes.		
Teaching- Learning Process	Chalk and talk method, Problems on source coding, error control codes RBT Level: L1, L2, L3		
	Module-5		
Linear Block Codes: Matrix description of Linear Block Codes, Error Detection & Correction capabilities of Linear Block Codes, Single error correction Hamming code, Table lookup Decoding using Standard Array. Convolution codes: Convolution Encoder, Time domain approach, Transform domain approach, Code			
Teaching.	Chalk and talk method. Animation of convolution encoders		
Learning Process	RBT Level: L1, L2, L3		
Course outc	omes (Course Skill Set)		
At the end of the course the student will be able to:			
1. Analyze different digital modulation techniques and choose the appropriate modulation technique			
for the	for the given specifications.		
2. Test ar	nd validate symbol processing and performance parameters at the receiver under ideal and		
corrup	ted bandlimited channels.		
 Differe commu 	ntiate various spread spectrum schemes and compute the performance parameters of unication system.		
4. Apply t	he fundamentals of information theory and perform source coding for given message		
5. Apply o	different encoding and decoding techniques with error Detection and Correction.		
Assessment Details (both CIE and SEE)			

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks (duration 01 hours)**

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module. Marks scored out of 100 shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Text Books:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.
- 3. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.
- 4. Hari Bhat, Ganesh Rao, "Information Theory and Coding", Cengage, 2017.
- 5. Todd K Moon, "Error Correction Coding", Wiley Std. Edition, 2006.

Reference Books:

- 1. Bernard Sklar, "Digital Communications Fundamentals and Applications", Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- 2. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.

Web links and Video Lectures (e-Resources)

• https://nptel.ac.in/courses/108102096

V Semester

Computer Organization & ARM Microcontrollers			
Course Code	21EC52	CIE Marks	50
Teaching Hours/Week (L: T: P: S)	(3:0:2:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 13 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course objectives: This course will enable students to:

- 1. Explain the basic organization of a computer system.
- 2. Demonstrate functioning of different sub systems, such as processor, Input/output, and memory.
- 3. Describe the architectural features and instructions of 32-bit microcontroller ARM Cortex M3.
- 4. Apply the knowledge gained for Programming ARM Cortex M3 for different applications.
- 5. Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- Lecture method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- Encourage collaborative (Group) Learning in the class.
- Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking.
- Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- Give Programming Assignments.

Module-1

Basic Structure of Computers: Basic Operational Concepts, Bus Structures, Performance – Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.

Text Book 1: Chapter 1 – 1.3, 1.4, 1.6 (1.6.1-1.6.4, 1.6.7), Chapter 2 – 2.2 to 2.10

Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces – PCI Bus, SCSI Bus, USB.

Text Book 1: Chapter 4 – 4.1, 4.2, 4.4, 4.5, 4.6, 4.7

Teaching-Learning	Chalk and Talk, YouTube videos
Process	RBT Level: L1, L2, L3

Module-2

Memory System: Basic Concepts, Semiconductor RAM Memories, Read Only Memories, Speed, Size, and Cost, Cache Memories – Mapping Functions, Replacement Algorithms, Performance Considerations. Text book 1: Chapter 5 – 5.1 to 5.4, 5.5 (5.5.1, 5.5.2), 5.6

Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Micro programmed Control. Basic concepts of pipelining, Text book 1: Chapter7, Chapter 8 – 8.1

Teaching-Learning	Chalk	and Talk, YouTube videos	
Process	RBT L	.evel: L1, L2, L3	
		Module-3	
ARM Embedded Systems: Introduction, RISC design philosophy, ARM design philosophy, Embedded system hardware – AMBA bus protocol, ARM bus technology, Memory, Peripherals, Embedded system software – Initialization (BOOT) code, Operating System, Applications. ARM Processor Fundamentals, ARM core dataflow model, registers, current program status register, Pipeline, Exceptions, Interrupts and Vector Table, Core extensions. Text book 2: Chapter 1, 2			
Teaching-Learning		Chalk and Talk, YouTube videos	
Process		RBT Level: L1, L2, L3	
		Module-4	
Introduction to the ARM Instruction set : Introduction, Data processing instructions, Load - Store instruction, Software interrupt instructions, Program status register instructions, Loading constants, ARMv5E extensions, Conditional Execution. Text book 2: Chapter 3			
Teaching-Learning		Chalk and Talk, Power point presentations, Programming assignments	
Process		RBT Level: L1, L2, L3	
Module-5			
Introduction to the THUMB instruction set : Introduction, THUMB register usage, ARM – THUMB interworking, Other branch instructions, Data processing instructions, Stack instructions, Software interrupt instructions. Efficient C Programming : Overview of C Compilers and optimization, Basic C Data types, C looping structures. Text book 2: Chapter 4, 5			
Teaching-Learning		Chalk and Talk, Power point presentations, Programming assignments	
Process		RBT Level: L1, L2, L3	

PRACTICAL COMPONENT OF IPCC

Conduct the following experiments by writing Assembly Language Program (ALP) using ARM Cortex M3 Registers using an evaluation board/simulator and the required software tool.

0	
Sl.No	Experiments
1	Write an ALP to i) multiply two 16-bit binary numbers. ii) add two 64-bit numbers.
2	Write an ALP to find the sum of first 10 integer numbers.
3	Write an ALP to find factorial of a number.
4	Write an ALP to add an array of 16-bit numbers and store the 32-bit result in internal RAM.
5	Write an ALP to find the square of a number (1 to 10) using look-up table.
6	Write an ALP to find the largest/smallest number in an array of 32 numbers.
7	Write an ALP to arrange a series of 32-bit numbers in ascending/descending order.
8	i) Write an ALP to count the number of ones and zeros in two consecutive memory locations.
	ill write an ALP to Scan a series of 32-bit numbers to find how many are negative.

Demonstration Experiments (For CIE only not for SEE)

Conduct the following experiments on an ARM CORTEX M3 evaluation board using evaluation version of Embedded 'C' & Keil µvision-4 tool/compiler.

9	Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
10	Interface a DAC and generate Triangular and Square waveforms.
11	Display the Hex digits 0 to F on a 7-segment LED interface, with a suitable delay in between.
12	Interface a simple Switch and display its status through Relay, Buzzer and LED.

Course Outcomes

At the end of the course the student will be able to:

- 1. Explain the basic organization of a computer system.
- 2. Demonstrate functioning of different sub systems, such as processor, Input/output, and memory.
- 3. Describe the architectural features and instructions of 32-bit microcontroller ARM Cortex M3.
- 4. Apply the knowledge gained for Programming ARM Cortex M3 for different applications.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of **20 Marks (duration 01 hour)**

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component.

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Textbooks

- 1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, 5th Edition, Tata McGraw Hill, 2002. (Listed topics only from Chapters 1, 2, 4, 5, 8).
- 2. Andrew N Sloss, Dominic System and Chris Wright, "ARM System Developers Guide", Elsevier, Morgan Kaufman publisher, 1st Edition, 2008.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve programming skills

ELECTROMAGNETIC WAVES			
Course Code	21EC54	CIE Marks	50
Teaching Hours/Week (L: T: P: S)	(3:0:0:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03

Course objectives: This course will enable students to :

- Study the different coordinate systems, Physical significance of Divergence, Curl and Gradient.
- Understand the applications of Coulomb's law and Gauss law to different charge distributions and the applications of Laplace's and Poisson's Equations to solve real time problems on capacitance of different charge distributions.
- Understand the physical significance of Biot-Savart's, Amperes's Law and Stokes'theorem for different current distributions.
- Infer the effects of magnetic forces, materials and inductance.
- Know the physical interpretation of Maxwell' equations and applications for Plane waves for their behavior in different media.
- Acquire knowledge of Poynting theorem and its application of power flow.

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 3. Adopt Problem Based Learning (PBL), which fosters students' analytical skills, develop thinkingskills such as the ability to evaluate, generalize & analyze information rather than simply recall it.
- 4. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 5. Using videos for demonstration of the fundamental principles to students for better understanding of concepts.

Module-1

Revision of Vector Calculus – (Text 1: Chapter 1)

Coulomb's Law, Electric Field Intensity and Flux density: Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Field due to Sheet of charge, Electric flux density, Numerical Problems. **(Text: Chapter 2.1 to 2.5, 3.1)**

	of the Basicprinciples of the devices would help students to grasp better.		
	RBT Level: L1. L2. L3		
	Module-2		
Gauss's law and Divergence: Gaus charge and volume charge, Point ((Electrostatics), Vector Operator ▼ 3.7).	(differential) form of Gauss' law to point charge, line charge, Surface (differential) form of Gauss law, Divergence. Maxwell's First equation and divergence theorem, Numerical Problems (Text: Chapter 3.2 to		
Energy, Potential and Conductor electric field, The line integral, De point charge, Potential gradient, N 4.6). Current and Current density, C	s: Energy expended or work done in moving a point charge in an efinition of potential difference and potential, The potential field of Numerical Problems (Text: Chapter 4.1 to 4.4 and Continuity of current, (Text: Chapter 5.1, 5.2)		
Teaching-Learning	Chalk and Talk. PowerPoint Presentation		
Process	RBT Level: L1, L2, L3		
	Module-3		
Poisson's and Laplace's Equations: Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation, Numerical problems on Laplace equation (Text: Chapter 7.1 to 7.3) Steady Magnetic Field: Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magneticflux and magnetic flux density, Basic concepts Scalar and Vector Magnetic Potentials, Numerical			
Feaching-LearningProcess Chalk and talk method, Power point presentation and videos.			
	RBT Level: L1, L2, L3		
	Module-4		
Magnetic Forces: Force on a moving charge, differential current elements, Force between differential current elements, Numerical problems (Text: Chapter 9.1 to 9.3). Magnetic Materials: Magnetization and permeability, Magnetic boundary conditions, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance and mutualreactance, Numerical problems (Text: Chapter 9.6 to 9.7). Faraday' law of Electromagnetic Induction –Integral form and Point form, Numerical problems (Text: Chapter 10.1)			
Teaching-LearningProcess	Chalk and Talk, PowerPoint Presentation		
	RBT Level: L1, L2, L3		
Module-5			
Maxwell's equations Continuity edisplacement current, Conduction integral form, Maxwell's equation 10.4) Uniform Plane Wave: Plane wav	equation, Inconsistency of Ampere's law with continuity equation, n current, Derivation of Maxwell's equations in point form, and ns for different media, Numerical problems (Text: Chapter 10.2 to re, Uniform plane wave, Derivation of plane wave equations from		
Maxwell's equations, Solution of wave equation for perfect dielectric, Relation between E and H, Wave			

Chalk and Talk would be helpful for the quantitative analysis. Videos

Teaching-LearningProcess

propagation in free space, Solution of wave equation for sinusoidal excitation, wave propagation in any conducting media (γ , α , β , η) and good conductors, Skin effect or Depth of penetration, Poynting's theorem and wave power, Numerical problems. (Text: Chapter 12.1 to

12.4)

Teaching-LearningProces	S
--------------------------------	---

Chalk and Talk, PowerPoint Presentation **RBT Level:** L1, L2, L3

Course Outcomes

At the end of the course the student will be able to:

- Evaluate problems on electrostatic force, electric field due to point, linear, volume charges by applying conventional methods and charge in a volume.
- Apply Gauss law to evaluate Electric fields due to different charge distributions and Volume Charge distribution by using Divergence Theorem.
- Determine potential and energy with respect to point charge and capacitance using Laplace equation and Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for different currentconfigurations
- Calculate magnetic force, potential energy and Magnetization with respect to magnetic materials and voltage induced in electric circuits.
- Apply Maxwell's equations for time varying fields, EM waves in free space and conductors and Evaluate power associated with EM waves using Poynting theorem

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20**

Marks (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Text Book:

1. W.H. Hayt and J.A. Buck, —Engineering Electromagnetics∥, 8th Edition, Tata McGraw-Hill, 2014, ISBN-978-93-392-0327-6.

Reference Books:

- 1. Elements of Electromagnetics Matthew N.O., Sadiku, Oxford university press, 4thEdn.
- 2. Electromagnetic Waves and Radiating systems E. C. Jordan and K.G. Balman, PHI, 2ndEdn.
- 3. Electromagnetics- Joseph Edminister, Schaum Outline Series, McGraw Hill.
- 4. N. NarayanaRao, Fundamentals of Electromagnetics for Engineering ||, Pearson

Web links and Video Lectures (e-Resources):

• https://archive.nptel.ac.in/courses/108/104/108104087/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Quizzes, Seminars

V Semester

	Communication Lab II				
Course	e Code	21ECL55	CIE Marks	50	
Teachi	ng Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50	
Credits	5	1	Exam Hours	3	
Course	e objectives:		L		
This la	boratory course enables stude	ents to			
• I	Design and demonstrate comm	unication circuits for differen	t digital modulation tecl	hniques.	
	l o simulate Source coding Algo	orithms using C/C++/ MAILA	B COOR. +/ MATLAB code		
• 5	Simulate the networking conce	pts and protocols using C/C+	+/ Network simulation t	cool.	
• (Inderstand entropies and mut	ual information of different co	ommunication channels.		
Sl.No.		Experiments			
	Implement	the following using discret	e components		
1	FSK generation and detection	n			
2	PSK generation and detection	n			
3	DPSK Transmitter and receiv	ver			
4	QPSK Transmitter and Recei	ver			
In	nplement the following in C/	C++/MATLAB/Scilab/Pytho	on or any other Suitabl	e software	
5	Write a program to encode b	inary data using Huffman cod	e and decode it.		
6	Write a program to encode binary data using a (7,4) Hamming code and decode it.				
7	Write a program to encode binary data using a ((3,1,2)/suitably designed) Convolution code and decode it.				
8	For a given data, use CRC-CCITT polynomial to obtain the CRC code. Verify the program for the cases a) Without error b) With error				
	Implement the foll	owing algorithms in C/C++/	MATLAB/Network sin	nulator	
9	Write a program for congest	ion control using leaky bucket	algorithm.		
10	Write a program for distance	e vector algorithm to find suita	able path for transmissio	on.	
11	Write a program for flow cor	ntrol using sliding window pro	otocols.		
12	Configure a simple network (Bus/star) topology using simulation software OR				
	Configure a simple network (Ring/Mesh) topology using simulation software.				
Demonstration Experiments (For CIE)					
13	Configure and simulate simp	le Wireless Local Area netwo	·k.		
14	Simulate the BER performant g(1) =(1 0 1 1) and g(2) =(1 decoding is to be performed $P_{e,b}$ versus E_b/N_0 . Consider b	nce of (2, 1, 3) binary convol 1 1 1) on AWGN channel. through Viterbi decoding. Plo inary input vector of size 3 lal	utional code with gener Use QPSK modulation s ot the bit error rate vers ch bits. Also find the cod	rator sequences cheme. Channel us SNR (dB), i.e. ing gain.	
15	Simulate the BER performan	ce of (7, 4) Hamming code or	n AWGN channel. Use Q	PSK modulation	

	scheme. Channel decoding is to be performed through maximum-likelihood decoding. Plot the bit error rate versus SNR (dB), i.e. $P_{e,b}$ versus E_b/N_0 . Consider binary input vector of size 5 lakh bits.		
	Use the following parity check matrix for the (7, 4) Hamming code. Also find the coding gain.		
	$H = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$		
16	Simulate the BER performance of rate 1/3 Turbo code. Turbo encoder uses two recursive		
	systematic encoders with $G(D) = \left[1, \frac{1+D^4}{1+D+D^2+D^3+D^4}\right]$ and pseudo-random interleaver. Use QPSK		
	modulation scheme. Channel decoding is to be performed through maximum a-posteriori (MAP)		
	decoding algorithm. Plot the bit error rate versus SNR (dB), i.e. P _{e,b} versus E _b /N ₀ . Consider binary		
	input vector of size of around 3 lakh bits and the block length as 10384 bits. Also find the coding		
	gain.		
Cours	e outcomes (Course Skill Set):		
On the	e completion of this laboratory course, the students will be able to:		
1.	Design and test the digital modulation circuits and display the waveforms.		
2.	2. To Implement the source coding algorithm using C/C++/ MATLAB code.		
3.	To Implement the Error Control coding algorithms using C/C++/ MATLAB code.		
4.	Illustrate the operations of networking concepts and protocols using C programming and network		

simulators.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by

the University

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners).

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours.

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.
- 3. Forouzan, "Data Communications and Networking", 5th Edition, McGraw Hill, 2013, ISBN: 1-25-906475-3.

V Semester

IoT (Internet of Things) Lab				
Course Code		21EC581	CIE Marks	50
Teachi	ng Hours/Week (L: T:P: S)	0:0:2:0	SEE Marks	50
Credits		1	Exam Hours	03
Course	e objectives:			
•	To impart necessary and practice	ctical knowledge of components of	f Internet of Things	
•	To develop skills required to	build real-life IoT based projects.		
Sl.No		Experiments		
1	i) To interface LED/Buzzer	with Arduino/Raspberry Pi and w	vrite a program to 't	urn ON' LED for
	1 sec after every 2 second	ls.		
	ii) To interface Push button,	/Digital sensor (IR/LDR) with Ard	uino/Raspberry Pi a	and write a
	program to 'turn ON' LED	when push button is pressed or a	it sensor detection.	
2	i) To interface DHT11 se	nsor with Arduino/Raspberry F	'i and write a pro	ogram to print
	temperature and humidit	y readings.		
	ii) To interface OLED with A	rduino/Raspberry Pi and write a	program to print te	emperature and
	humidity readings on it.			
3	To interface motor using re	elay with Arduino/Raspberry Pi	and write a progra	m to 'turn ON'
	motor when push button is p	ressed.		
4	To interface Bluetooth with	Arduino/Raspberry Pi and write	a program to send	sensor data to
	smartphone using Bluetooth			
5	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF			
	when '1'/'0' is received from smartphone using Bluetooth.			
6	Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to			
	thingspeak cloud.			
7	Write a program on Arduin	no/Raspberry Pi to retrieve tem	perature and humi	idity data from
	thingspeak cloud.			
8	To install MySQL database or	n Raspberry Pi and perform basic	SQL queries.	
9	Write a program on Arduino	/Raspberry Pi to publish tempera	ture data to MQTT b	oroker.
10	Write a program to create UI	DP server on Arduino/Raspberry I	Pi and respond with	humidity data
	to UDP client when requeste	d.		
11	Write a program to create TO	CP server on Arduino/Raspberry F	i and respond with	humidity data
	to TCP client when requested	1.		
12	Write a program on Arduino	/Raspberry Pi to subscribe to MQ ^r	IT broker for tempe	rature data
	and print it.			
Course	e outcomes (Course Skill Set):		
At the	derstand internet of Things ar	will be able to:	nonents	
$\frac{1}{2} \text{Interface I/O devices sensors } communication modules$				
Remotely monitor data and control devices				
4 Develop real life IoT based projects				
Assassment Details (both CIF and SFF)				
m				
The w	eigntage of Continuous Interr	al Evaluation (LIE) is 50% and	for Semester End E	xam (SEE) is
50%.1	ne minimum passing mark for	the LIE is 40% of the maximum r	narks (20 marks). A	student shall
be dee	be deemed to have satisfied the academic requirements and earned the credits allotted to each course.			

The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands on Approach", University Press
- 2. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach", ETI Labs
- 3. Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- 4. Jeeva Jose, "Internet of Things", Khanna Publishing House, Delhi
- 5. Adrian McEwen, "Designing the Internet of Things", Wiley
- 6. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

VI Semester

Microwave Theory and Antennas			
Course Code	21EC62	CIE Marks	50
Teaching Hours/Week (L: T: P: S)	(3:0:2:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 12 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course objectives: This course will enable students to :

- 1. Describe the microwave properties and its transmission media.
- 2. Describe the microwave devices for several applications.
- 3. Understand the basic concepts of antenna theory.
- 4. Identify antenna types for specific applications.

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 3. Adopt Problem Based Learning (PBL), which fosters students' analytical skills, develop thinking skills such as the ability to evaluate, generalize & analyze information rather than simply recall it.
- 4. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 5. Using videos for demonstration of the fundamental principles to students for better understanding of concepts.
- 6. Demonstration of microwave devices and Antennas in the lab environment where students can study them in real time.

Module-1

Microwave Sources: Introduction, Gunn Diode (Text 2: 7.1,7.1.1,7.1.2)

Microwave transmission lines: Microwave frequencies, Microwave devices, Microwave systems. Transmission line equations and solutions, Reflection Coefficient and Transmission Coefficient. Standing wave and standing wave ratio. Smith chart, Single stub matching.

Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 (except double stub matching)

Teaching-Learning Process	Chalk and Talk would be helpful for the quantitative analysis. Videos of the Basic principles of the devices would help students to grasp better.	
	RBT Level: L1, L2, L3	
	Module-2	
A Closer Look at Met Microwave Network 6.3, 6.3.1, 6.3.2)	hods and classes: Overloading methods, Using objects as parameters, Returning Theory : Introduction, S matrix representation of multi-port networks (Text 1: 6.1,	
Microwave passive devices : Coaxial connectors and Adapters, Attenuators, Phase shifters, waveguide Tees, Magic Tee, Circulator, Isolator. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16, 6.4.17 A, B)		
Teaching-Learning	Chalk and Talk. PowerPoint Presentation	

Process	RBT L	evel: L1, L2, L3		
		Module-3		
Strip Lines: Introducti Antenna Basics: Intro efficiency, Directivity a Antenna Field Zones (T	Strip Lines : Introduction, Microstrip lines, Parallel Strip lines (Text 2: 11.1,11.2) Antenna Basics : Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity,Beam efficiency, Directivity and Gain, Antenna Aperture Effective height, Bandwidth, Radio communication Link, Antenna Field Zones (Text 3: 2.1-2.7.2.9-2.11.2.13)			
Teaching-Learning		Chalk and talk method, Power point presentation and videos.		
Process		RBT Level: L1, L2, L3		
		Module-4		
 Point sources and arrays: Introduction, Point Sources, Power patterns, Power theorem, Radiation Intensity, Arrays of 2 isotropic point sources, Pattern multiplication, Linear arrays of n Isotropic sources of equal amplitude and Spacing. (Text 3: 5.1-5.6, 5.9, 5.13) Electric Dipole: Introduction, Short Electric dipole, Fields of a short dipole. Radiation resistance of a short dipole. Thin linear antenna (field analysis). (Text 3: 6.1-6.5) 				
Teaching-Learning Process		Chalk and Talk, PowerPoint Presentation		
		RBT Level: L1, L2, L3		
Module-5				
 Loop and Horn antenna: Introduction: Small loop, Comparison of far fields of small loop and Short dipole. Radiation resistance of small loop, Horn Antennas, Rectangular antennas. (Text 3: 7.1,7.2, 7.4, 7.6, 7.7, 7.8, 7.19, 7.20) Antenna Types: The Helix geometry, Helix modes, Practical design consideration for mono-filar axial mode Helical Antenna, Yagi Uda array, Parabolic Reflector (Text 3: 8.3, 8.4, 8.5, 8.8, 9.5) 				
Teaching-Learning		Chalk and Talk, PowerPoint Presentation		
Process		RBT Level: L1, L2, L3		

PRACTICAL COMPONENT OF IPCC		
Sl.No	Experiments	
1	Study of characteristics of Magic Tee.	
2	Coupling and Isolation characteristics of microstrip directional coupler.	
3	Determination of power division of microstrip power divider.	
4	Determination of resonance characteristics of microstrip ring resonator and computation of dielectric constant of the substrate.	
5	Measurement of frequency, guide wavelength, power and attenuation in a microwave Test bench.	
6	Study of characteristics of E plane Tee / H plane Tee.	
7	To measure unknown impedance using Smith chart through test bench setup.	
8	Measurement of VSWR and reflection coefficient and attenuation in a microwave test bench	
9	Obtain the radiation pattern of a Vagi-IIda Antenna array and calculate its directivity	
10	Calculate the aperture of a Dipole Antonna	
11	Obtain the near and far fields of a given entering and compare the fields	
40	obtain the near and far fields of a given antenna and compare the fields.	
12	Obtain the bandwidth of a given Antenna.	

Course Outcomes

At the end of the course the student will be able to:

- 1. Describe the use and advantages of microwave transmission
- 2. Analyze various parameters related to transmission lines.
- 3. Identify microwave devices for several applications.
- 4. Analyze various antenna parameters and their significance in building the RF system.
- 5. Identify various antenna configurations for suitable applications.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10^{th} week of the semester

Two assignments each of 10 Marks

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks.

Marks of all experiments' write-ups are added and scaled down to 15 marks.

• The laboratory test **(duration 03 hours)** at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component.

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Text Books:

- 1. Microwave Engineering -Annapurna Das, Sisir K Das, TMH Publication, 2nd Edition, 2010.
- 2. Microwave Devices and Circuits Samuel Y Liao, Pearson Education.
- 3. Antennas and Wave Propagation -John D Krauss, Ronald J Marhefka, Ahmad S Khan, 4th Edition, McGraw Hill Education, 2013.

Reference Books:

- 1. Microwave Engineering -David M Pozar, John Wiley India Pvt Ltd., Pvt Ltd., 3rd edition, 2008.
- 2. Microwave Engineering-Sushrut Das, Oxford Higher Education, 2nd Edn, 2015.
- 3. Antennas and Wave Propagation- Harish and Sachidananda, Oxford University Press, 2007.

Web links and Video Lectures (e-Resources):

- https://www.tutorialspoint.com/antenna_theory/antenna_theory_horn.html
- http://www.antenna-theory.com/antennas/smallLoop.php

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Quizzes, Seminars

VI Semester

	Python Programming		
Course Code	21EC643	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	2:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	3	Exam Hours	3

Course objectives:

- To learn programming using Python
- Develop application using Python

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and programming skills.
- 2. State the need for learning Programming with real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short, related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1

Python Basics, Python language features, History, Entering Expressions into the Interactive Shell, The Integer, Floating-Point, and String Data Types, String Concatenation and Replication, Storing Values in Variables, Your First Program, Dissecting Your Program, Flow control, Boolean Values, Comparison Operators, Boolean Operators, Mixing Boolean and Comparison Operators, Elements of Flow Control, Program Execution, Flow Control Statements, Importing Modules, Ending a Program Early with sys.exit(), Functions, def Statements with Parameters, Return Values and return Statements, The None Value, Keyword Arguments and print(), Local and Global Scope, The global Statement, Exception Handling, A Short Program: Guess the Number

Textbook 1: Chapters 1 – 3

Teaching-Learning Process	Chalk and talk method, Simulation of modulation techniques RBT Level: L1, L2, L3	
Module-2		
Data Structures: Lists with Strings, Useful S Real-World Things, M Textbook 1: Chapters	:: The List Data Type, Working with Lists Strings: Manipulating Strings, Working String Methods Tuples and Dictionaries, basics Using Data Structures to Model anipulating Strings. 4 – 6	
Teaching-Learning Process	Chalk and talk method/Power point presentation	

	Module-3	
Pattern Matching wi Finding Patterns of T The findall() Method, Characters, The Wild	th Regular Expressions, Finding Patterns of Text Without Regular Expressions, 'ext with Regular Expressions, More Pattern Matching with Regular Expressions,, Character Classes, Making Your Own Character Classes, The Caret and Dollar Sign card Character, Review of Regex Symbols.	
Reading and Writing Saving Variables with Textbook 1: Chapters	Files, Files and File Paths, The os.path Module, The File Reading/Writing Process, the shelve Module, Saving Variables with the pprint. pformat() Function 7, 8	
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation RBT Level: L1, L2, L3	
	Module-4	
Classes and objects: Objects are mutable versus planning, Cla The init method, The Textbook 2: Textbool	Programmer-defined types, Attributes, Rectangles, Instances as return values, , Copying, Classes and functions: Time, Pure functions, Modifiers, Prototyping sses and methods: Object-oriented features, Printing objects, Another example, _str method, Operator overloading, Type-based dispatch, Polymorphism. & 2: Chapters 15 – 18	
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation RBT Level: L1, L2, L3	
	Module-5	
urllib, Parsing html a using urllib, XML, P Service, Security & A database table, SQL, S kinds of Keys, JOIN Text book : Chapter 2	nd scraping the web, Parsing HTML using RE, BeautifulSoup, Reading binary files arsing XML, Looping through nodes, JSON, Parsing JSON, API, geocoding Web IPI usage, What is database?, Database Concepts, Database Browser, Creating a Spidering Twitter, Basic data modeling, Programming with multiple tables, Three 2, 13, 15	
Teaching-Learning Process	Chalk and talk method/Power point presentation RBT Level: L1, L2, L3	
Course outcomes (Co	ourse Skill Set)	
At the end of the cours	e the student will be able to:	
 I o acquire programming skills in Python To demonstrate data structure representation using Python 		
 To develop the skill of pattern matching and files in Python 		
4. To acquire Object Oriented Skills in Python		
5. To develop the ability to write database applications in Python		
Assessment Details (both CIE and SEE) The weightage of Continuous 5 End Examination) taken together.		
Continuous Internal	Evaluation:	
Three Unit Tests each of 20 Marks (duration 01 hour)		
1. First test at the end of 5 th week of the semester		
2. Second test at the end of the 10 th week of the semester		
3. Third test at t	he end of the 15 th week of the semester	
Two assignments each	of 10 Marks	
4. First assignment at the end of 4 th week of the semester		
5. Second assignment at the end of 9 th week of the semester		
Group discussion/Sem	ninar/quiz any one of three suitably planned to attain the COs and POs for 20	
Marks (duration 01 l	iours)	

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module. Marks scored out of 100 shall be reduced proportionally to 50 marks

Suggested Learning Resources:

Text Books:

- Al Sweigart, "Automate the Boring Stuff with Python",1st Edition, No Starch Press, 2015. (Available under CC-BY-NC-SA license at https://automatetheboringstuff.com/) (Chapters 1 to 8)
- Allen B Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Green Tea Press, 2015. (Available under CC-BY-NC license at http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15 18) (Download pdf/html files from the above links)
- 3. Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st, Create Space Independent Publishing Platform, 2016

Web links and Video Lectures (e-Resources)

- <u>https://www.youtube.com/watch?v=_xQNeOTRyig</u>
- <u>https://www.youtube.com/watch?v=kqtD5dpn9C8</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Write a program to generate Fibonacci series
- Write a program to find factorial of a number using function.
- Write a menu driven program to implement stack using Lists
- Create a DB using dictionaries containing key as USN and related fields containing Name, gender, Marks1, Marks2 & Marks3 of students. Implement the following functions to perform i) Update Name/gender/marks ii) search for usn and display the relevant fields iii) delete based on search for name iv)generate the report with avg marks more than 70%
- Write a program to implement search and replace multiple occurrences of a given substring in the main string in a list.
- Write a function called most_frequent that takes a string and prints the letters in decreasing order of frequency.
- Write a program that reads a file, display the contents, builds a histogram of the words in the file and print most common words in the file.
- Write a program that searches a directory and all of its subdirectories, recursively, and returns a list of complete paths for all files with a given suffix.

- Write python code to extract From: and To: Email Addresses from the given text file using regular expressions. <u>https://www.py4e.com/code3/mbox.txt</u>.
- Consider the sentence *"From rjlowe@iupui.edu Fri Jan 4 14:50:18 2008"*, Write python code to extract email address and time of the day from the given sentence
- Write a program to read, display and count number of sentences of the given file.
- Write a program that gets the current date and prints the day of the week.
- Write a function called print_time that takes two Time objects and prints total time it in the form hour:minute:second.
- Write a program that takes a birthday as input and prints the user's age and the number of days, hours, minutes and seconds until their next birthday.

VII Semester

Optical & Wireless Communication			
Course Code	21EC72	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	2:0:0:1	SEE Marks	50
Total Hours of Pedagogy	30	Total Marks	100
Credits	2	Exam Hours	3
Non-MCO pattern of CIE and SEE			

Course objectives:

This course will enable students to:

- Learn the basic principle of optical fiber communication with different modes of light propagation.
- Understand the transmission characteristics and losses in optical fiber.
- Study of optical components and its applications in optical communication networks.
- Understand the concepts of propagation over wireless channels from a physics standpoint
- Understand the multiple access techniques used in cellular communications standards.
- Application of Communication theory both Physical and networking to understand GSM systems that handle mobile telephony.

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the functioning of various techniques.
- 3. Encourage collaborative (Group) Learning in the class
- 4. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Optical Fiber Structures: Optical Fiber Modes and Configurations, Mode theory for circular waveguides, Single mode fibers, Fiber materials.

Attenuation and Dispersion: Attenuation, Absorption, Scattering Losses, Bending loss, Signal Dispersion: Modal delay, Group delay, Material dispersion.

[Text1: 3.1, 3.2, 2.3[2.3.1 to 2.3.4], 2.4[2.4.1, 2.4.2], 2.5, 2.7].

RBT Level: L1, L2, L3		
Process		
Teaching-Learning Ch	Chalk and talk method, Power point presentation	

Optical Sources and detectors: Light Emitting Diode: LED Structures, Light source materials, Quantum efficiency and LED power, Laser Diodes: Modes and threshold conditions, Rate equations, External quantum efficiency, Resonant frequencies, Photodetectors: The pin Photodetector, Avalanche Photodiodes.

WDM Concepts: Overview of WDM, Isolators and Circulators, Fiber grating filters, Dielectric thin-film filters, Diffraction Gratings. [Text1: 4.2, 4.3, 6.1, 10.1, 10.3, 10.4, 10.5, 10.7] Chalk and talk method, Power point presentation **Teaching-Learning** Process **RBT Level:** L1, L2, L3 Module-3 Mobile Communication Engineering: Wireless Network generations, Basic propagation Mechanisms, Mobile radio Channel. Principles of Cellular Communications: Cellular terminology, Cell structure and Cluster, Frequency reuse concept, Cluster size and system capacity, Frequency Reuse Distance, Cochannel Interference and signal quality. [Text2: 1.4, 2.4, 2.5, 4.1 to 4.4, 4.6, 4.7] **Teaching-Learning** Chalk and talk method, Power point presentation Process RBT Level: L1, L2, L3 Module-4 Multiple Access Techniques: FDMA, TDMA, CDMA, SDMA, Hybrid Multiple Access Techniques, Multicarrier Multiple Access Schemes. A Basic Cellular System: A basic cellular system connected to PSTN, Parts of basic cellular system, Operation of a cellular system. [Text2: 8.2, 8.3, 8.4.5, 8.5, 8.6, 8.10, 9.2.2, 9.2.3, 9.3] **Teaching-Learning** Chalk and talk method, Power point presentation Process **RBT Level:** L1, L2, L3 Module-5 Global System for Mobile (GSM): GSM Network Architecture, GSM signalling protocol architecture, Identifiers used in GSM system, GSM Channels, Frame structure for GSM, GSM Call procedures, GSM hand-off Procedures, GSM Services and features. [Text2: 11.1, 11.2, 11.3, 11.4, 11.5, 11.8, 11.9. 11.10] **Teaching-Learning** Chalk and talk method, Power point presentation Process RBT Level: L1, L2, L3 **Course outcomes (Course Skill Set)** At the end of the course the student will be able to: 1. Classification and characterization of optical fibers with different modes of signal propagation. Describe the constructional features and the characteristics of optical fiber and optical devices used for signal transmission and reception. 3. Understand the essential concepts and principles of mobile radio channel and cellular communication. 4. Describe various multiple access techniques used in wireless communication systems. 5. Describe the GSM architecture and procedures to establish call set up, call progress handling and call tear down in a GSM cellular network. **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together **Continuous Internal Evaluation (CIE):** CIE will be the same as other core theory courses.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. Semester End Examination (SEE): For non-MCQ pattern of CIE and SEE **Continuous Internal Evaluation (CIE):** At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of CIE for the course. Three Unit Tests each of **20 Marks (duration 01 hour)** 1. First test at the end of 5th week of the semester 2. Second test at the end of the 10th week of the semester 3. Third test at the end of the 15th week of the semester Two assignments each of 10 Marks 4. First assignment at the end of 4th week of the semester 5. Second assignment at the end of 9th week of the semester Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20** Marks (duration 01 hours) 6. At the end of the 13th week of the semester The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks (to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. **Semester End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours) 1. The question paper will have ten questions. Each question is set for 20 marks. 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module. The students have to answer 5 full questions, selecting one full question from each module. Marks scored out of 100 shall be reduced proportionally to 50 marks Suggested Learning Resources: **Text Books** 1. Gerd Keiser, Optical Fiber Communication, 5th Edition, McGraw Hill Education (India) Private Limited, 2016. ISBN:1-25-900687-5. 2. T L Singal, Wireless Communications, McGraw Hill Education (India) Private Limited, 2016, ISBN:0-07-068178-3. **Reference Books** 1. John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition, Pearson Education, 2010, ISBN:978-81-317-3266-3 2. Theodore Rappaport, Wireless Communications: Principles and Practice, 2nd Edition, Prentice Hall Communications Engineering and Emerging Technologies Series, 2002, ISBN 0-13-042232-0. 3. Gary Mullet, Introduction to Wireless Telecommunications Systems and Networks, First Edition, Cengage Learning India Pvt Ltd., 2006, ISBN - 13: 978-81-315-0559-5.

VII Semester

	Digital Image Processing		
Course Code	21EC732	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	3	Exam Hours	3

Course objectives:

- Understand the fundamentals of digital image processing.
- Understand the image transform used in digital image processing.
- Understand the image enhancement techniques in spatial domain used in digital image processing.
- Understand the Color Image Processing and frequency domain enhancement techniques in digital image processing.
- Understand the image restoration techniques and methods used in digital image processing.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Show Video/animation films to explain the functioning of various image processing concepts.
- 2. Encourage cooperative (Group) Learning through puzzles, diagrams, coding etc., in the class.
- 3. Encourage students to ask questions and investigate their own ideas helps improve their problem-solving skills as well as gain a deeper understanding of academic concepts.
- 4. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 5. Students are encouraged to do coding based projects to gain knowledge in image processing.
- 6. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 7. Topics will be introduced in multiple representations.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding
- 9. Arrange visits to nearby PSUs such as CAIR (DRDO), NAL, BEL, ISRO, etc., and small-scale software industries to give industry exposure.

Module-1			
Digital Imag	Digital Image Fundamentals: What is Digital Image Processing?, Origins of Digital Image Processing,		
Examples of fields that use DIP, Fundamental Steps in Digital Image Processing, Components of an			
Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition, Image			
Sampling and Quantization, Some Basic Relationships Between Pixels.			
[Text 1: Chapter 1, Chapter 2: Sections 2.1 to 2.5]			
Teaching- Chalk and talk method, PowerPoint Presentation, YouTube videos, Videos on Image			
Learning processing applications			
Process Self-study topics: Arithmetic and Logical operations			
Practical topics: Problems on Basic Relationships Between Pixels.			
	RBT Level: L1, L2, L3		

	Module-2	
Image Trans	sforms: Introduction, Two-Dimensional Orthogonal and Unitary Transforms, Properties of	
Unitary Tran	sforms, Two-Dimensional DFT, cosine Transform, Haar Transform.	
Text 2: Chap	ter 5: Sections 5.1 to 5.3, 5.5, 5.6, 5.9]	
Teaching-	Chalk and talk method, PowerPoint Presentation, YouTube videos of various	
Learning	transformation techniques and related applications.	
Process	Self-study topics: Sine transforms, Hadamard transforms, KL transform, Slant transform.	
	Practical topics: Problems on DFT and DCT	
	RBT Level: L1, L2, L3	
	Module-3	
Spatial D Fundamenta [Text: Chapte	o main: Some Basic Intensity Transformation Functions, Histogram Processing, ls of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters er 3: Sections 3.2 to 3.6]	
Teaching- Learning Process	Chalk and talk method, PowerPoint Presentation, YouTube videos and animations of Intensity Transformation Functions, Histogram Processing, Spatial domain filters. Self-study topics: Point, line and edge detection.	
	Practical topics: Problems on Intensity Transformation Functions, Histogram, Spatial domain filters	
	RBI Level: L1, L2, L3	
	Module-4	
Frequency I	Domain: Basics of Filtering in the Frequency Domain, Image Smoothing and Image	
Color Image	Sing Frequency Domain Finters. Processing: Color Fundamentals, Color Models, Pseudo-color Image Processing	
Toyt 1: Char	stor 4: Sections 4.7 to 4.9 and Chapter 6: Sections 6.1 to 6.2]	
	Chalk and talk method. PowerPoint Presentation. YouTube videos on frequency domain	
Teaching-	filtering Color image processing	
Process	Self-study topics: Basic concept of segmentation.	
Practical tonics: Problems on Pseudo-color Image Processing		
	RBT Level: L1, L2, L3	
	Module-5	
Restoration:	A model of the Image Degradation/Restoration Process Noise models Restoration in the	
Presence of	Noise Only using Spatial Filtering and Frequency Domain Filtering, Inverse Filtering,	
Minimum Mean Square Error (Wiener) Filtering.		
[Text 1: Chap	oter 5: Sections 5.1, to 5.4.3, 5.7, 5.8]	
Teaching- Learning	Chalk and talk method, PowerPoint Presentation, YouTube videos on Noise models, filters and its applications.	
Process	Self-study topics: Linear position invariant degradation, Estimation of degradation function.	
	RBT Level: L1, L2, L3	
Course outco At the end of t 1. Underst color im	mes (Course Skill Set) the course the student will be able to: tand image formation and the role of human visual system plays in perception of gray and hage data.	
2. Comput	e various transforms on digital images.	
 3. Lonauct independent study and analysis of Image Enhancement techniques. 4. Apply image processing techniques in frequency (Fourier) domain 		
 Appry mage processing techniques in frequency (rourier) domain. Design image restoration techniques 		
ס. שבאצוו ווומצע ועאנטו וענוווויןעעלג.		
Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks (duration 01 hours)**

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module. Marks scored out of 100 shall be reduced proportionally to 50 marks

Suggested Learning Resources:

Text Books:

- 1. Digital Image Processing- Rafael C Gonzalez and Richard E Woods, PHI, 3rd Edition 2010.
- 2. Fundamentals of Digital Image Processing- A K Jain, PHI Learning Private Limited 2014.

Reference Book:

Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar, Tata McGraw Hill, 2014.

Web links and Video Lectures (e-Resources)

- Image databases, https://imageprocessingplace.com/root_files_V3/image_databases.htm
- Student support materials,
- https://imageprocessingplace.com/root_files_V3/students/students.htm
- NPTEL Course, Introduction to Digital Image Processing, https://nptel.ac.in/courses/117105079
- Computer Vision and Image Processing, https://nptel.ac.in/courses/108103174
- Image Processing and Computer Vision Matlab and Simulink,

• https://in.mathworks.com/solutions/image-video-processing.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Verilog /VHDL coding for Image manipulation.
- Simulink models for Image processing.

B. E. MECHANICAL ENGINEERING					
Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III					
COMPUTER AIDED MACHINE DRAWING					
Course Code	18ME36A/46A	CIE Marks	40		
Teaching Hours/Week (L:T:P)	1:4:0	SEE Marks	60		
Credits 03 Exam Hours 03					
Course Learning Objectives:					

- To acquire the knowledge of CAD software and its features.
- To familiarize the students with Indian Standards on drawing practices.
- To impart knowledge of thread forms, fasteners, keys, joints and couplings.
- To make the students understand and interpret drawings of machine components leading to preparation of assembly drawings manually and using CAD packages.
- To acquire the knowledge of limits, tolerance and fits and indicate them on machine drawings.

Part A

Part A

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap. Conversion of pictorial views into orthographic projections of simple machine parts (with and without section). Hidden line conventions. Precedence of lines.

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Conversion of pictorial views into orthographic projections of simple machine parts. Hidden line conventions. Precedence of lines.

Conversion of pictorial views into orthographic projections of simple machine parts (with section planes indicated on the part).

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

Part B

Keys: Parallel key, Taper key, Feather key, Gib-head key and Woodruff key.

Joints: Cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

Couplings: Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, and universal coupling (Hooks' Joint)

Part C

Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards followed in industry.

Assembly Drawings: (Part drawings shall be given)

1. Plummer block (Pedestal Bearing)

- 2. Lever Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice

7. Tool head of shaper

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify the national and international standards pertaining to machine drawing.
- CO2: Understand the importance of the linking functional and visualization aspects in the preparation of the part drawings
- CO3: Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies.
- CO4: Interpret the Machining and surface finish symbols on the component drawings.
- CO5: Preparation of the part or assembly drawings as per the conventions.

Scheme of Examination: Two questions to be set from each Part A, part B and Part C. Student has to answer one question each from Part A and Part B for 25 marks each and one question from Part C for 50 marks.

INSTRUCTION FOR COMPUTER AIDED MACHINE DRAWING (15ME36A/46A) EXAMINATION

- 1. No restriction of timing for sketching/ computerization of solutions. The total duration is 3 hours.
- 2. It is desirable to do sketching of all the solutions before computerization.
- 3. Drawing instruments may be used for sketching.
- 4. For Part A and Part B, 2D drafting environment should be used.
- 5. For Part C, 3D environment should be used for parts and assembly, and extract 2D views of assembly.
- 6. Part A and Part B
 - 25 Marks (15 marks for sketching and 10 marks for computer work)

7. Part C

50 Marks (20 marks for sketching and 30 marks for computer modelling)

CI		N (.)				
SI No	Title of the Book	Name of the	Name of the Publisher	Edition and Year		
INO		Author/s				
Text	Textbook/s					
1	Machine Drawing	K.R. Gopala	Subhash Publication	2005		
		Krishna				
2	Machine Drawing	N.D.Bhat&V.M.	Charoratar publishing	2005		
		Panchal	house			
Refe	rence Books					
3	A Text Book of Computer Aided	S. Trymbaka	CBS Publishers, New Delhi	2007		
	Machine Drawing	Murthy				
4	Engineering drawing	P.S.Gill	S K Kataria and Sons	2013		
5	Machine Drawing	N. Siddeshwar,	Tata McGraw Hill	2006		
		P. Kanniah,				
		V.V.S. Sastri				

	B. E. MECHANICAL ENGINEERING				
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
Cour	se Code	18MFI 37A/47A	CIF Marks	40	
Teac	ning Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred	ts	02	Exam Hours	03	
Cour	se Learning Objectives:				
.	 To learn the concept of the pr 	eparation of samples to perform of	characterization such a	is	
	microstructure, volume fraction	on of phases and grain size.			
.	 To understand mechanical bel 	naviour of various engineering ma	terials by conducting s	standard tests.	
.	 To learn material failure mode 	es and the different loads causing	failure.		
	• To learn the concepts of impro	oving the mechanical properties o	f materials by differen	t methods like	
	heat treatment, surface treatr	nent etc.	,		
SI.		Experiments			
No.					
		PART A			
1	Preparation of specimen for Met	allographic examination of different	ent engineering materi	ials.	
	To report microstructures of	plain carbon steel, tool steel, ۽	gray C.I, SG iron, Bra	ass, Bronze &	
	composites.				
2	Heat treatment: Annealing, norn	nalizing, hardening and tempering	g of steel.		
	Metallographic specimens of he	eat treated components to be s	upplied and students	should report	
	microstructures of furnace coole	d, water cooled, air cooled, temp	ered steel.		
	Students should be able to dist	inguish the phase changes in a r	leat treated specimer	i compared to	
3	Brinell Bockwell and Vickers's H	ardness tests on untreated and be	pat treated specimens		
4	To study the defects of Cast and	Welded components using Non-d	lestructive tests like:		
	a) Ultrasonic flaw of	letection			
	b) Magnetic crack o	detection			
	c) Dye penetration	testing.			
		PART B			
5	Tensile, shear and compression	n tests of steel, aluminum and	cast iron specimens	using Universal	
	Testing Machine				
6	Torsion Test on steel bar.				
	Bending lest on steel and wood	specimens.			
8	Izod and Charpy Tests on Mild st	eel and C.I Specimen.	rials under different n	aramators	
10	Tensile shear and compression	tests of steel aluminum and	cast iron specimens	arameters.	
	Testing Machine		case non specificits	using onversu	
11	Fatigue Test (demonstration only	<i>y</i>).			
Cour	se Outcomes: At the end of the co	ourse, the student will be able to:			
	CO1: Acquire experimentation skil	Is in the field of material testing.			
C	CO2: Develop theoretical understanding of the mechanical properties of materials by performing				
expe	riments.		,	J	
	CO3: Apply the knowledge to anal	vse a material failure and determi	ine the failure inducing	g agent/s.	
	CO4: Apply the knowledge of testi	ng methods in related areas			
	205: Understand how to improve	structure/hehaviour of materials	for various industrial a	nnlications	
	cos: Understand now to improve structure/benaviour of materials for various industrial applications.				

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners. Scheme of Examination:

ONE question from part -A: 30 Marks ONE question from part -B: 50 Marks Viva -Voice: 20 Marks Total: 100 Marks

	B. E. MECHANICAL ENGINEERING				
	Choice Based Cre	dit System (CBCS) and Outco SEMESTER – III	me Based Education (OBE)		
	WC	DRKSHOP AND MACHINE SHO	DP PRACTICE		
Cour	se Code	18MEL38A/48A	CIE Marks	40	
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred	its	02	Exam Hours	03	
Cour	se Learning Objectives:				
•	 To guide students to use fit 	ing tools to perform fitting o	perations.		
•	 To provide an insight to diff 	erent machine tools, accesso	ries and attachments.		
•	 To train students into fitting 	and machining operations to	enrich their practical skills.		
•	To inculcate team qualities	and expose students to shop	floor activities.		
•	To educate students about	ethical, environmental and sa	fety standards.		
		Experiments			
SI.		PART A			
No					
1	Preparation of at least two fit	ting joint models by proficien	t handling and application c	of hand tools- V-	
	block, marking gauge, files, ha	ack saw drills etc.			
		PART B			
2	Preparation of three models	on lathe involving - Plain t	urning, Taper turning, Step	o turning, Thread	
	cutting, Facing, Knurling, Drill	ng, Boring, Internal Thread cu	utting and Eccentric turning		
	Exercises should include selec	tion of cutting parameters ar	nd cutting time estimation.		
		PART C			
3	Cutting of V Groove/ dovetail	/ Rectangular groove using a	shaper.		
	Cutting of Gear Teeth using N	lilling Machine.			
	Exercises should include selec	tion of cutting parameters ar	nd cutting time estimation.		
		PART D (DEMONSTRATION	I ONLY)		
	Study & Demonstration of	power tools like power dril	l, power hacksaw, portabl	le hand grinding,	
	cordless screw drivers, produ-	ction air tools, wood cutter, e	tc., used in Mechanical Engi	ineering.	
Cour	se Outcomes: At the end of the	course, the student will be a	ble to:		
0	CO1: To read working drawings,	understand operational sym	bols and execute machining	operations.	
0	CO2: Prepare fitting models acc	ording to drawings using hand	d tools- V-block, marking ga	uge, files, hack	
	saw, drills etc.				
	203: Understand integral parts	of lathe, shaping and milling r	machines and various access	sories and	
	attachments used.	like evitting encode food doot	h of out and to align for your	aug maghining	
	.04: Select cutting parameters	like cutting speed, feed, dept	n of cut, and tooling for vari	ious machining	
	Operations.	operations such as plain turr	ning tonor turning ston tur	ning throad	
	Cutting facing knurling in	ternal thread cutting accent	ric turning and estimate cut	ting time	
	Cutting, facing, knurling, internal thread cutting, eccentric turning and estimate cutting time.				
			child shaping, keyway cath		
Cond	luct of Practical Examination:				
1. All	laboratory experiments are to	be included for practical exar	nination.		
2. Br	eakup of marks and the instruc	tions printed on the cover page	ge of answer script to be str	ictly adhered by	
the	e examiners.		and here the second		
3. Sti	udents can pick one experiment	t from the questions lot prepa	area by the examiners.	to be made -ere	
4. UN	4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.				

Scheme of Examination:	
One Model from Part-A or Part-C:	30 Marks
One Model from Part-B:	50 Marks
Viva – Voce:	20 Marks
TOTAL:	100 Marks

	B. E. MECHANICAL ENGINEERING				
	Choice Based Credit	System (CBCS) and Outcome Base	ed Education (OBE)		
		SEMESTER - IV			
	FOL	INDRY, FORGING AND WELDING L	AB	-	
Cour	se Code	18MEL38B/48B	CIE Marks	40	
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred	its	02	Exam Hours	03	
Cour	se Learning Objectives:				
•	To provide an insight into diffe	rent sand preparation and foundry	equipment.		
•	To provide an insight into diffe	rent forging tools and equipment a	and arc welding too	ls and	
	equipment.				
•	To provide training to student	s to enhance their practical skills in	welding, forging ar	nd hand moulding.	
SI.		Experiments			
No.					
		PART A			
1	Testing of Molding sand and Co	re sand.			
	Preparation of sand specimens	and conduction of the following te	ests:		
	1. Compression, Shear and Tens	ile tests on Universal Sand Testing I	Machine.		
	2. Permeability test				
	3. Sieve Analysis to find Grain Fi	neness Number (GFN) of Base Sand	l		
	4. Clay content determination o	n Base Sand.			
	Welding Practice:				
	Use of Arc welding tools and we	lding equipment			
	Preparation of welded joints usi	ng Arc Welding equipment			
	L-Joint, T-Joint, Butt joint, V-Join	t, Lap joints on M.S. flats			
		PART B			
2	Foundry Practice:				
	Use of foundry tools and other	equipment for Preparation of mole	ding sand mixture.		
	Preparation of green sand mo	lds kept ready for pouring in the fo	ollowing cases:		
	4. Using two molding boxe	s (hand cut molds).			
	5. Using patterns (Single p	ece pattern and Split pattern).			
	6. Incorporating core in the	e mold.(Core boxes).			
	Preparation of one casting (All	iminium or cast iron-Demonstratio	n only)		
3	Forging Operations: Use of for	ging tools and other forging equipr	nent.		
	Calculation of length of the ray	w material required to prepare the	model considering	scale loss.	
Cour	• Preparing minimum three long	ed models moorning upsetting, dra	wing and bending c	perations.	
Cour	Demonstrate various skills in	purse the student will be able to:	nducting tonsile	shoor and	
•			nuucting tensile, s	inedi anu	
	compression tests using Unive	rsal sand testing machine.			
•	Demonstrate skills in determining permeability, clay content and Grain Fineness Number of base				
	sands.				
•	• Demonstrate skills in preparation of forging models involving upsetting, drawing and bending				
	operations				
Conc	uct of Practical Examination:				
1. All	laboratory experiments are to be	included for practical examination			
2. Br	2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by				
the	e examiners.				
3. Sti	Jaents can pick one experiment fr	om the questions lot prepared by t	ne examiners.	to be made	
4. Ch	4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.				

Scheme of Examination:

- 1. One question is to be set from Part-A: 30 marks. (20 marks for sand testing+ 10 Marks for welding)
- 2. One question is to be set from either Part-B or Part-C: 50 Marks
- 3. Viva Voce: 20 marks

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand needs, functions, roles, scope and evolution of Management.
- CO2: Understand importance, purpose of Planning and hierarchy of planning and also53 nalyse its types.
- CO3: Discuss Decision making, Organizing, Staffing, Directing and Controlling.
- CO4: Select the best economic model from various available alternatives.
- CO5: Understand various interest rate methods and implement the suitable one.
- CO6: Estimate various depreciation values of commodities.
- CO7: Prepare the project reports effectively.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

The students will have	to answer five full (questions, selecting	one full ques	tion from each module.
The stadenes will have		questions, serecting	5 one run ques	cion n'onn cucin mouule.

SI No	Title of the Book	Name of the	Name of the Publisher	Edition and
Textboo	ok/s			
1	Mechanical estimation and	T.R. Banga & S.C.	Khanna Publishers	17th edition
	costing	Sharma		2015
2	Engineering Economy	Riggs J.L	McGraw Hill	4th
3	Engineering Economy	Thuesen H.G	PHI	2002
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition
				2006
Referen	ce Books	·		•
1	Management Fundamentals	Robers Lusier	Pearson Education	
	- Concepts, Application, Skill	Thomson		
	Development			
2	Modern Economic Theory	Dr. K. K. Dewett&	Chand Publications	
		M. H. Navalur,		
3	Economics: Principles of	N Gregory Mankiw,	Cengage Learning	
	Economics			
4	Basics of Engineering Economy	Leland Blank &	McGraw Hill Publication	
		Anthony Tarquin	(India) Private Limited	

B. E. MECHANICAL ENGINEERING					
Choice Based Credit Sy	vstem (CBCS) and Outcome Ba	ised Education (C	DBE)		
	SEMESTER - V				
DE	DESIGN OF MACHINE ELEMENTS I				
Course Code	18ME52	CIE Marks	40		
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60		
Credits	04	Exam Hours	03		
Course Learning Objectives:					
To understand the various steps in	nvolved in the Design Process.				
To explain the principles involved	in design of machine element	s, subjected to di	ifferent kinds of forces,		
from the considerations of streng	th, rigidity, functional and mar	iufacturing requir	rements.		
 To understand and interpret diffe machine elements. 	rent failure modes and applica	tion of appropria	ite criteria for design of		
To learn to use national and inte	rnational standards, standard	practices, standa	ard data, catalogs, and		
standard components used in des	ign of machine elements.	,	, 0,		
 Develop the capability to design 	elements like shafts, couplir	ngs, welded joint	s, screwed joints, and		
power screws.	<i>,</i> 1	0,	· · · ·		
Module-1					
Introduction: Design Process: Definition	of design, phases of design, a	nd review of eng	ineering materials and		
their properties and manufacturing proces	sses; use of codes and standar	ds, selection of p	referred sizes.		
Review of axial, bending, shear and torsio	n loading on machine compor	ents, combined l	oading, two- and three		
dimensional stresses, principal stresses, st	ress tensors, Mohr's circles.				
Design for static strength: Factor of safety	and service factor.				
Failure mode: definition and types. , F	ailure of brittle and ductile	materials; even	and uneven materials;		
Theories of failure: maximum normal str	ess theory, maximum shear	stress theory, dis	tortion energy theory,		
strain energy theory, Columba –Mohr	theory and modified Mohr'	s theory. Stress	concentration, stress		
concentration factor and methods of redu	cing stress concentration.				
Module-2					
Impact Strength: Introduction, Impact stre	esses due to axial, bending and	torsion loads.			
Fatigue loading: Introduction to fatigue	failure, Mechanism of fatigu	e failure, types o	of fatigue loading, S-N		
Diagram, Low cycle fatigue, High cycle fati	gue, Endurance limit.	Santa Nistala anas	iti itu. Cadan bana and		
Modifying factors: size effect, surface effect	method loading sumulative f	rects Notch sens	itivity, Soder berg and		
Module-3	mbined loading, cumulative is	aligue uamage, a	nu miller's equation.		
Design of shafts: Torsion of shafts solid	and hollow shaft design with	steady loading	hased on strength and		
rigidity, ASME and BIS codes for power tr	ansmission shafting, design of	shafts subjected	to combined bending,		
torsion and axial loading. Design of shafts	subjected to fluctuating loads	-	_		
Design of keys and couplings :Keys: Type	s of keys and their application	ns, design conside	erations in parallel and		
tapered sunk keys, Design of square and r	ectangular sunk keys.				
Couplings: Rigid and flexible coupling-type	es and applications, design of	Flange coupling,	and Bush and Pin type		
coupling.					
Module-4					
Design of Permanent Joints: Types of per	manent joints-Riveted and We	elded Joints.			
Riveted joints: Types of rivets, rivet mate	rials, Caulking and fullering, a	nalysis of riveted	joints, joint efficiency,		
failures of riveted joints, boiler joints, riveted brackets.					
Welded joints: Types, strength of butt and fillet welds, eccentrically loaded welded joints					
Module-5					
Design of Temporary Joints: Types of temporary joints- cotter joints, knuckle joint and fasteners. Design of					
Cotter and Knuckle Joint.					
Threaded Fasteners: Stresses in threaded	tasteners, effect of initial tens	sion, design of thi	readed fasteners under		
static, dynamic and impact loads, design c	f eccentrically loaded bolted j	oints.			

Power screws: Mechanics of power screw, stresses in power screws, efficiency and self-locking, design of power screws.

Assignment:

Course work includes a **Design project**. Design project should enable a group of students (maximum four in a group) to design a mechanical system (like couplings, screw jack, welded joints, bracket mounting using fasteners, etc.). Student should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Apply the concepts of selection of materials for given mechanical components.
- CO2: List the functions and uses of machine elements used in mechanical systems.
- CO3: Apply codes and standards in the design of machine elements and select an element based on the Manufacturer's catalogue.
- CO4: Analyse the performance and failure modes of mechanical components subjected to combined loading and fatigue loading using the concepts of theories of failure.
- CO5: Demonstrate the application of engineering design tools to the design of machine components like shafts, couplings, power screws, fasteners, welded and riveted joints.
- CO6: Understand the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the	Edition and Year
Textboo	ok/s			
1	Shigley's Mechanical Engineering Design	Richard G. Budynas, and J. Keith Nisbett	McGraw-Hill Education	10 th edition, 2015.
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M.	John Wiley & Sons	Third Edition, 2007 student
3	Design of Machine Elements,	V B Bhandari	Tata McGraw Hill	4th Ed., 2016.
4	Design of Machine Elements-I	Dr.M H Annaiah Dr. J Suresh Kumar	New Age International (P)	1s Ed., 2016
Referen	ce Books	-		
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition.
2	Design and Machine Elements	Spotts M.F., Shoup T.E	Pearson Education	8 th edition,2006
3	Machine Component Design	Orthwein W	Jaico Publishing Co	2003
4	Machine Design	Hall, Holowenko, Laughlin (Schaum's Outline series)	Tata McGraw Hill Publishing	Special Indian Edition, 2008
5	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019

6	Design of Machine	T. Krishna Rao	IK international	2012	
0	Elements Volume I		publishing house,		
7	Hand book of Mechanical	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition, 2004.	
/	Design				
		·	•		
Design I	Data Hand Book:				
[1] Desi	[1] Design Data Hand Book, K. Lingaiah, McGraw Hill, 2 nd edition, 2003.				
[2] Desi	[2] Design Data Hand Book, K. Mahadevan and Balaveera Reddy, CBS publication.				
[3] Design Data Hand Book, H.G.Patil, I. K. International Publisher, 2010					
[4] PSG Design Data Hand Book, PSG College of technology, Colmbatore					

B. E. MECHANICAL ENGINEERING				
Choice Based C	redit System (CBCS) and Ou	itcome Based Education (OBE)		
Course Code	18MF62	CIF Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Course Learning Objectives:				
To understand various ele	ements involved in a mecha	nical system.		
To analyze various force	s acting on the elements (of a mechanical system and de	sign them using	
annropriate techniques	odes and standards	si a meenamear system and ac		
To coloct transmission	olomonta liko goara holt	s nullous boorings from the	manufacturars'	
• To select transmission	elements like gears, beits	s, pulleys, bearings from the	manufacturers	
catalogue.				
 To design a mechanical sy 	stem integrating machine e	lements.		
 To produce assembly a 	nd working drawings of v	various mechanical systems in	volving machine	
elements like belts, pulley	/s, gears, springs, bearings, o	clutches and brakes.		
Module-1				
Springs: Types of springs, spring	materials, stresses in helic	al coil springs of circular and n	on-circular cross	
sections. Tension and compressio	n springs, concentric spring	s; springs under fluctuating load	s.	
Leaf Springs: Stresses in leaf sprin	gs, equalized stresses, and r	hipping of leaf springs.		
Introduction to torsion and Bellev	ville springs.			
Belts: Materials of construction	of flat and V belts, power i	ating of belts, concept of slip a	and creep, initial	
tension, effect of centrifugal tension	ion, maximum power condit	ion.	• •	
Selection of flat and V belts- le	ength & cross section fron	n manufacturers' catalogues. C	Construction and	
application of timing belts.				
Wire ropes: Construction of wire	ropes, stresses in wire rope	s, and selection of wire ropes.		
Module-2				
Gear drives: Classification of gear	rs, materials for gears, stan	dard systems of gear tooth, lub	rication of gears,	
and gear tooth failure modes.				
Spur Gears: Definitions, stresses	in gear tooth: Lewis equation	on and form factor, design for st	trength, dynamic	
load and wear.				
Helical Gears: Definitions, trans	verse and normal module,	formative number of teeth, of	design based on	
strength, dynamic load and wear.				
Module-3				
Bevel Gears: Definitions, formativ	e number of teeth, design t	based on strength, dynamic load	and wear.	
Worm Gears: Definitions, types of	of worm and worm gears, a	nd materials for worm and wor	m wheel. Design	
based on strength, dynamic, wear	⁻ loads and efficiency of wor	m gear drives.		
Module-4				
Design of Clutches: Necessity	of a clutch in an automol	pile, types of clutch, friction n	naterials and its	
properties. Design of single plate,	multi-plate and cone clutch	es based on uniform pressure a	nd uniform wear	
theories.				
Design of Brakes: Different types of brakes, Concept of self-energizing and self-locking of brakes. Practical				
examples, Design of band brakes, block brakes and internal expanding brakes.				
Module-5				
Lubrication and Bearings: Lubrica	nts and their properties, be	aring materials and properties;	mechanisms of	
Iubrication, hydrodynamic lubrica	tion, pressure development	in oil film, bearing modulus, co	efficient of	
friction, minimum oil film thickne	ss, heat generated, and heat	t dissipated. Numerical example	s on	
hydrodynamic journal and thrust	bearing design.			

Antifriction bearings: Types of rolling contact bearings and their applications, static and dynamic load carrying capacities, equivalent bearing load, load life relationship; selection of deep grove ball bearings from the manufacturers' catalogue; selection of bearings subjected to cyclic loads and speeds; probability of survival.

Assignment:

Course work includes a **Design project**. Design project should enable the students to design a mechanical system (like single stage reduction gear box with spur gears, single stage worm reduction gear box, V-belt and pulley drive system, machine tool spindle with bearing mounting, C-clamp, screw jack, etc.) A group of students (maximum number in a group should be 4) should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Apply design principles for the design of mechanical systems involving springs, belts, pulleys, and wire ropes.

- CO2: Design different types of gears and simple gear boxes for relevant applications.
- CO3: Understand the design principles of brakes and clutches.
- CO4: Apply design concepts of hydrodynamic bearings for different applications and select Anti friction bearings for different applications using the manufacturers, catalogue.
- CO6: Apply engineering design tools to product design.

CO7: Become good design engineers through learning the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Shigley's Mechanical	Richard G. Budynas, and	McGraw-Hill	10 th Edition, 2015
	Engineering Design	J. Keith Nisbett	Education	
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M	John Wiley & Sons	Third Edition 2007 Wiley student edition
3	Design of Machine Elements	V. B. Bhandari	Tata Mcgraw Hill	4th Ed 2016.
4	Design of Machine Elements-II	Dr.M H Annaiah Dr. J Suresh Kumar Dr.C N Chandrappa	New Age International (P) Ltd.,	1s Ed., 2016
Referen	ce Books	••		1
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition
2	Design and Machine Elements	Spotts M.F., ShoupT.E	Pearson Education	8 th edition, 2006

3	Machine design Hall, Holowenko, Laughlin (Schaum's Outline Series	adapted by S.K.Somani	Tata McGraw Hill Publishing Company Ltd	Special Indian Edition, 2008
4	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019
5	Design of Machine ElementsVolume II	T. Krishna Rao	IK international publishing house	2013
6	Hand book of Mechanical Design	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition,2004
Design	Data Hand Books:		•	

[1] Design Data Hand Book, K.Lingaiah, McGraw Hill, 2nd edition, 2003.

[2] Design Data Hand Book, K.Mahadevan and Balaveera Reddy, CBS publication.

[3] Design Data Hand Book, H.G.Patil, I.K.International Publisher, 2010

[4] PSG Design Data Hand Book PSG College of technology Coimbatore

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

HEAT TRANSFER				
Course Code 18ME63 CIE Marks 40				
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Study the modes of heat transfer.
- Learn how to formulate and solve 1-D steady and unsteady heat conduction problems.
- Apply empirical correlations for fully-developed laminar, turbulent internal flows and external boundary layer convective flow problems.
- Study the basic principles of heat exchanger analysis and thermal design.
- Understand the principles of boiling and condensation including radiation heat transfer related engineering problems.

Module-1

Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Types of boundary conditions. General three dimensional Heat Conduction Equation: Derivation of the equation in (i) Cartesian, coordinate only. Discussion of three dimensional Heat Conduction Equation in (ii) Polar and (iii) Spherical Co-ordinate Systems.

Steady-state one-dimensional heat conduction problems in Cartesian System: Steady-state one-dimensional heat conduction problems (i) without heat generation and (ii) constant thermal conductivity - in Cartesian system with various possible boundary conditions. Brief Introduction to variable thermal conductivity and heat generation [No numerical on variable thermal conductivity and heat generation] Thermal Resistances in Series and in Parallel. Critical Thickness of Insulation in cylinder and spheres Concept. Derivation

Module-2

Extended Surfaces or Fins: Classification, Straight Rectangular and Circular Fins, Temperature Distribution and Heat Transfer Calculations, Fin Efficiency and Effectiveness, Applications

Transient [Unsteady-state] heat conduction: Definition, Different cases - Negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance, Lumped body, Infinite Body and Semi-infinite Body, Numerical Problems, Heisler and Grober charts.

Module-3

Numerical Analysis of Heat Conduction: Introduction, one-dimensional steady conduction and one dimensional unsteady conduction, boundary conditions, solution methods.

Thermal Radiation: Fundamental principles - Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's displacement law, Planck's laws, Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws, View factor, Net radiation exchange between parallel plates, concentric cylinders, and concentric spheres, Radiation Shield.

Module-4

Forced Convection: Boundary Layer Theory, Velocity and Thermal Boundary Layers, Prandtl number, Turbulent flow, Various empirical solutions, Forced convection flow over cylinders and spheres, Internal flows –laminar and turbulent flow solutions.

Free convection: Laminar and Turbulent flows, Vertical Plates, Vertical Tubes and Horizontal Tubes, Empirical solutions.

Module-5

Heat Exchangers: Definition, Classification, applications, LMTD method, Effectiveness - NTU method, Analytical Methods, Fouling Factors, Chart Solution Procedures for solving Heat Exchanger problems: Correction Factor Charts and Effectiveness-NTU Charts.

Introduction to boiling: pool boiling, Bubble Growth Mechanisms, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling, Critical Heat Flux, Heat Transfer beyond the Critical Point, filmwise and dropwise Condensation.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand the modes of heat transfer and apply the basic laws to formulate engineering systems.
- CO2: Understand and apply the basic laws of heat transfer to extended surface, composite material and unsteady state heat transfer problems.
- CO3: Analyze heat conduction through numerical methods and apply the fundamental principle to solve radiation heat transfer problems.
- CO4: Analyze heat transfer due to free and forced convective heat transfer.
- CO5: Understand the design and performance analysis of heat exchangers and their practical applications, Condensation and Boiling phenomena.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Principals of heat transfer	Frank Kreith, Raj M. Manglik, Mark S. Bohn	Cengage learning	Seventh Edition 2011.
2	Heat transfer, a practical approach	Yunus A. Cengel	Tata Mc Graw Hill	Fifth edition
Referen	ice Books			
1	Heat and mass transfer	Kurt C, Rolle	Cengage learning	second edition
2	Heat Transfer A Basic Approach	M. NecatiOzisik	McGraw Hill, New York	2005
3	Fundamentals of Heat and Mass Transfer	Incropera, F. P. and De Witt, D. P	John Wiley and Sons, New York	5th Edition 2006
4	Heat Transfer	Holman, J. P.	Tata McGraw Hill, New York	9th Edition 2008

		B. E. MECHANICAL ENGIN	IEERING			
	Choice Based Credi	t System (CBCS) and Outco	ome Based Education (OBE)			
		SEMESTER - VI				
		HEAT TRANSFER LA	В			
Cour	se Code	18MEL67	CIE Marks	40		
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60		
Cred	its	02	Exam Hours	03		
Cour	se Learning Objectives:					
•	The primary objective of this of	course is to provide the fur	ndamental knowledge necessa	iry to		
	understand the behavior of th	ermal systems.				
•	This course provides a detaile	d experimental analysis, in	cluding the application and he	eat transfer		
	through solids, fluids, and vac	uum.				
•	Convection, conduction, and r	adiation heat transfer in o	ne and two dimensional stead	ly and unsteady		
SI.	systems are examined.	Experiments				
No.			-			
		PART A				
1	Determination of Thermal Cond	uctivity of a Metal Rod.				
2	Determination of Overall Heat 1	ransfer Coefficient of a Co	mposite wall.			
3	Determination of Effectiveness	on a Metallic fin.				
4	Determination of Heat Transfer	Coefficient in free Convec	tion			
5	Determination of Heat Transfer	Coefficient in a Forced Co	nvention			
6	Determination of Emissivity of a	Surface.				
		PART B				
7	Determination of Stefan Boltzm	ann Constant.				
8	Determination of LMDT and Effe	ectiveness in a Parallel Flov	w and Counter Flow Heat Exch	angers.		
9	Experiments on Boiling of Liquid	and Condensation of Vap	our.			
10	Performance Test on a Vapour (Compression Refrigeration				
11	Performance Test on a Vapour (Compression Air – Conditio	oner.			
12	Experiment on Transient Condu	ction Heat Transfer.				
	•	PART C (OPTIONAL	.)			
13	Analysis of steady and transient	heat conduction, tempera	ature distribution of plane wal	l and cylinder		
	using Numerical approach (ANS	YS/CFD package).				
	с II (
14	Determination of temperature	distribution along a rectan	gular and circular fin subjected	d to heat loss		
	through convection using Nume	erical approach (ANSYS/CF	D package).			
Cour	se Outcomes: At the end of the c	ourse, the student will be	able to:			
CO1:	Determine the thermal conduction	vity of a metal rod and ove	erall heat transfer coefficient o	of composite		
	slabs.					
CO2:	Determine convective heat trans	fer coefficient for free and	I forced convection and correl	ate with		
	theoretical values.					
CO3:	Evaluate temperature distributio	on characteristics of steady	and transient heat conductio	n through solid		
	cylinder experimentally.					
CO4:	Determine surface emissivity of a	a test plate and Stefan Bol	tzmann constant			
CO5:	CO5: Estimate performance of a refrigerator and effectiveness of a fin and Double pipe heat exchanger					

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

Scheme of Examination:

One Question from Part A - 40 Marks

One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

B. E. MECHANICAL ENGINEERING					
Choice Based Cr	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
	SEMESTER – V	/11			
	Professional Elect	tive 3			
	MECHATRONI	CS			
Course Code	Course Code 18ME744 CIE Marks 40				
Teaching Hours /Week (L:T:P)	Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60				
Credits	03	Exam Hours	03		

Course Learning Objectives:

- To acquire a strong foundation in science and focus in mechanical, electronics, control, software, and computer engineering, and a solid command of the newest technologies.
- To understand the evolution and development of Mechatronics as a discipline.
- To substantiate the need for interdisciplinary study in technology education
- To understand the applications of microprocessors in various systems and to know the functions of each element.
- To demonstrate the integration philosophy in view of Mechatronics technology
- To be able to work efficiently in multidisciplinary teams.

Module-1

Introduction: Scope and elements of mechatronics, mechatronics design process, measurement system, requirements and types of control systems, feedback principle, Basic elements of feedback control systems, Classification of control system. Examples of Mechatronics Systems such as Automatic Car Park system, Engine management system, Antilock braking system (ABS) control, Automatic washing machine.

Transducers and sensors: Definition and classification of transducers, Difference between transducer and sensor, Definition and classification of sensors, Principle of working and applications of light sensors, Potentiometers, LVDT, Capacitance sensors, force and pressure sensors, Strain gauges, temperature sensors, proximity switches and Hall Effect sensors.

Module-2

Signal Conditioning: Introduction – Hardware – Digital I/O, Analog to digital conversions, resolution, Filtering Noise using passive components – Registers, capacitors, amplifying signals using OP amps. Digital Signal Processing – Digital to Analog conversion, Low pass, high pass, notch filtering. Data acquisition systems (DAQS), data loggers, Supervisory control and data acquisition (SCADA), Communication methods.

Electro Mechanical Drives:Relays and Solenoids – Stepper Motors – DC brushed motors – DC brushless motors – DC servo motors – 4-quadrant servo drives, PWM's – Pulse Width Modulation.

Module-3

Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers.

Microprocessor Architecture: Microprocessor architecture and terminology-CPU, memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data Registers, Program Counter, Flags, Fetch cycle, write cycle, state, bus interrupts. Intel's 8085A Microprocessor.

Module-4

Programmable Logic Controller: Introduction to PLCs, Basic structure of PLC, Principle of operation, input and output processing, PLC programming language, ladder diagram, ladder diagrams circuits, timer counters, internal relays, master control, jump control, shift registers, data handling, and manipulations, analogue input and output, selection of PLC for application.

Application of PLC control: Extending and retracting a pneumatic piston using latches, control of two pneumatic pistons, control of process motor, control of vibrating machine, control of process tank, control of conveyer motor etc.

Module-5

Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Machine Elements: Different types of guide ways, Linear Motion guideways. Bearings: anti-friction bearings,

hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools.

Mechatronics Design process: Stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Automatic car park barrier.

Course Outcomes: At the end of the course the student will be able to:

CO1: Illustrate various components of Mechatronics systems.

CO2: Assess various control systems used in automation.

CO3: Design and conduct experiments to evaluate the performance of a mechatronics system or component with

respect to specifications, as well as to analyse and interpret data.

CO4: Apply the principles of Mechatronics design to product design.

CO5: Function effectively as members of multidisciplinary teams.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s		·	
1	Mechatronics-Principles Concepts and Applications	Nitaigour Premchand Mahalik	Tata McGraw Hill	1 st Edition, 2003
2	Mechatronics–Electronic Control Systems in Mechanical and Electrical Engineering,	W.Bolton	Pearson Education	1stEdition, 2005
Referen	ice Books			
1	Mechatronics	HMT Ltd	Tata Mc Graw Hill	1st Edition, 2000 ISBN:978007 4636435
2	Mechatronics: Integrated Mechanical Electronic Systems	K.P. Ramachandran, G.K. Vijayaraghavan, M.S. Balasundaram.	Wiley India Pvt. Ltd. New Delhi	2008
3	Introduction to Mechatronics and Measurement Systems	David G. Aldatore, Michael B. Histand	McGraw-Hill Inc USA	2003
4	Introduction to Robotics: Analysis, Systems, Applications.	Saeed B. Niku,	Person Education	2006
5	Mechatronics System Design	Devdas Shetty, Richard A. kolk	Cengage publishers.	second edition

Scheme of Examination: One question from Part A: 40 marks One question from Part B: 40 Marks Viva voce: 20 Marks Total: 100 Marks

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VIII**

ENERGY ENGINEERING				
Course Code	18ME81	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand energy scenario, energy sources and their utilization
- Learn about energy conversion methods
- Study the principles of renewable energy conversion systems.

Module-1

STEAM GENERATORS Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures, LaMount, Benson, Velox, Loeffer, Schmidt steam generators, Cooling towers and Ponds, Accessories such as Superheaters, De-superheater, Economizers, Air preheaters.

Module-2

Solar Energy: Introduction, Solar radiation at the earth's surface, Solar radiation measurements, Flat plate collectors, Focussing collectors, Solar pond, Solar electric power generation-Solar photovoltaics.

Biomass Energy: Photosynthesis, photosynthetic oxygen production, energy plantation. Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, Bio gas plants-KVIC, Janta, Deenbhandu models, factors affecting bio gas generation. Thermal gasification of biomass, updraft and downdraft Module-3

Geothermal Energy: Forms of geothermal energy, Dry steam, wet steam, hot dry rock and magmatic chamber systems.

Tidal Energy: Tidal power, Site selection, Single basin and double basin systems, Advantages and disadvantages of tidal energy.

Wind Energy: Wind energy-Advantages and limitations, wind velocity and wind power, Basic components of wind energy conversion systems, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor, Applications of wind energy.

Module-4

Hydroelectric plants: Advantages & disadvantages of water power, Hydrographs and flow duration curvesnumericals, Storage and pondage, General layout of hydel power plants- components such as Penstock, surge tanks, spill way and draft tube and their applications, pumped storage plants, Detailed classification of hydroelectric plants, water hammer.

Ocean Thermal Energy: Ocean thermal energy conversion, Principle and working of Rankine cycle, Problems associated with OTEC.

Module-5

NUCLEAR ENERGY Principles of release of nuclear energy-Fusion and fission reactions. Nuclear fuels used in the reactors, Chain reaction, Moderation, breeding, Multiplication and thermal utilization factors. General components of a nuclear reactor and materials, Brief description-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shielding, Nuclear waste, Radioactive waste disposal.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand the construction and working of steam generators and their accessories.

CO2: Identify renewable energy sources and their utilization.

CO3: Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, nuclear, hydel and tidal.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Power Plant Engineering	P. K. Nag	Tata McGraw Hill Education Private Limited, New Delhi	Third Edition, 2012.
2	Power Plant Engineering	Arora and Domkundwar	Dhanpat Rai & Co. (P) Ltd.	Sixth Edition, 2012.
3	Non-conventional Sources of Energy	G.D.Rai	Khanna Publishers, New Delhi	Fifth Edition, 2015.
4	Non-conventional energy resources	B H Khan	McGraw Hill Education	3rd Edition
Refere	nce Books			
1	Power Plant Engineering	R. K. Rajput	Laxmi publication New Delhi	
2	Principles of Energy conversion	A. W. Culp Jr	McGraw Hill	1996
3	Power Plant Technology	M.M. EL-Wakil	McGraw Hill International	1994
4	Solar Energy: principles of Thermal Collection and Storage	S.P. Sukhatme	Tata McGraw-Hill	1984

4th Semester MBA HR Electives

CONFLICT & NEGOTIATION MANAGEMENT					
Course Code	22MBAHR403	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	2:2:0	SEE Marks	50		
Total Hours of Pedagogy	40	Total Marks	100		
Credits	03	Exam Hours	03		
Course Learning objectives:					
1. To understand the nature of various	dimensions of conflict.				
2. To learn various strategies and tech	niques to manage conflicts.				
3. To understand the importance and r	ole of negotiation in conflict	resolution.			
4. To understand the importance of cro	oss-cultural and gender dimen	nsions of negotiation	n.		
Module-1 6 Hours	S				
Introduction: Conflict: Definition, M	Ieaning, Theories, Types of	Conflicts - Product	tive (functional)		
and Destructive (dysfunctional). L	evels of conflict – intrap	personal, interperso	onal, group &		
organizational conflicts, Process and	d Structural Models. Mytl	hs about conflicts	- of conflicts:		
cognitive (Pseudo conflict), process (s	imple conflict) and Inter-per	sonal conflict (ego o	conflict), causes		
of conflict: common causes, organiza	ational and interpersonal of o	conflict: traditional	, Contemporary		
and Integrationist, Causes for work pla	ace conflicts – Harassment ar	nd discrimination.			
Module-2 7 Hou	rs				
Analogy of Conflict: Stages of conf	licts: grievances- personal n	eeds, lack of mone	etary benefits and		
Incentives, promotion and recognit	ion, harassment, discrimina	tion, prejudice an	d Bias, identity		
unconcern attitudes of administration,	frustration, escalation of Con	nflicts, and violence	e, Cost and effect		
of conflicts. Perspectives of conflict	- organizational and individu	als. Spectrum of c	onflicts- Persona		
conflicts, group conflicts, labour c	conflicts, social and polition	cal conflicts, Con	tingency conflic		
management process, Cost of Workpla	ace Conflict, conflict mapping	g and tracking			
Module-3 7 Hou	irs				
Conflict Management: Nature of	conflict Management, Man	naging conflict: T	homas conflict		
resolution approach (Avoiding, A	ccommodating, Compromi	sing, Competing,	Collaboration)		
behavioural style and conflict handli	ng, Cosier Schank model of	conflict resolution	1. Strategies for		
resolving Individual, Team and or	ganizational level conflict,	, Conflict Resolut	tion Process –		
Persuasion, Counselling and Reconci	liation Skills, Negotiation a	nd Arbitration, Sk	tills for conflict		
management – Listening, Mentoring, Mediating, Negotiating, Counselling, Diplomacy, EI (Emotional					
Intelligence). Conflict Regulation Red	uction, Resolution, Transform	mation			
Module-4 6 Ho	urs				
Negotiation: Negotiations/ Negotiat	ion strategies –Meaning,	Six Foundations	of Negotiation,		
Negotiations, negotiation process, Pri	nciples for successful negoti	iations, Factors and	essential skills		
for negotiation, tricks used in neg	gotiation process, psycholo	gical advantage c	of negotiations,		

Techniques of negotiation, issues in negotiations. Negotiation strategies: Strategy and tactics for

distributive bargaining

Module-5

7 Hours

Negotiation - Resolving Disputes: Dispute Settlement Negotiation (DSN) and Deal Making Negotiation (DMN), importance of BATNA (Best alternative to a negotiated agreement) and ZOPA (Zone of possible agreement) in Dispute Settlement, Negotiation Strategy and tactics for integrative negotiation, negotiation strategy and planning. Finding and using negotiation power, sources of power, Implications of Negotiation on Policy making, Ethics in negotiation.

Module-6 7 Hours

Managing Impasse and difficult negotiations

Impasse - Meaning, Definition Third party approaches: Third party interventions, formal intervention methods – Arbitration, Mediation and Process Consultation, Informal intervention methods, best practices in negotiation.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full questions from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

COMPENSATION AND REWARD MANAGEMENT					
Course Code	22MBAHR306	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50		
Total Hours of Pedagogy	50	Total Marks	100		
Credits	04	Exam Hours	03		
Course Learning objectives:					
• The student will be able to descri	be and identify the applicati	on of Compensati	ion Management		
in the Organisation					
• The student will be able to des	cribe and explain in her/hi	is own words, th	e relevance and		
importance of Compensation Man	agement in the Organisation	1			
• The student will be able to appl	y and solve the workplace	problems throug	h application of		
Compensation Management					
• The student will be able to cl	assify and categories diffe	erent models and	l approaches of		
Compensation Management adopt	ed in the Organisation				
• The student will be able to formu	late and prepare Compensat	tion Management	to be adopted in		
the Organisation					
• 6. The student will be able to des	sign and develop an original	l framework and r	nodel in dealing		
with compensation problems in th	e organisation.	_			
Module-1 (7 Hours)		_			
Compensation: Compensation, Meaning	of compensation, Total Comp	ensation/Reward an	d Its Components		
and Types, Importance of the Total Compe	ensation Approach, Wages/Sala	aries, Some Other T	erms, Theories of		
Compensation Policy Base of Compensat	ion Management The Psycho	alogical Contract (Tompensation and		
Legal Issues in Compensation Manageme	ent. Factors Affecting Employ	vee Compensation/	Vage Rates/Wage		
Structure/Levels of Pay.	in, ruetors rifeeting Employ	ee compensation,	ruge Rules, rruge		
Module-2 (7 Hours)					
Compensation Management: Meanir	ng of Compensation Manager	ment Methods of	Wage Payment		
Essentials of a Satisfactory Wage System,	National Wage Policy in India	a, Wage Policy at th	e Organisational		
Level, Wage Problems in India, Comp	oonents/Functions of Compen	sation Managemer	nt/W&S Admin,		
Divergent Systems and Institutions for Wa	ge Fixation in India.				
Module -3 (9 Hours)					
Organisations Introduction Management's	Strategy Reward Policy Rev	vard Management F	Processes Reward		
Management Procedures, Pay Reviews, Planning and Implementing Pay Reviews, Procedures for Grading Jobs					
and Pay, Rates Fixation, Controlling Pay	roll Costs, Evaluation of Rev	ward Processes, So	me Other Trends,		
Boardroom Pay; Divergent Systems and	Institutions for Wage Fixatio	n in Practice in In	dia, Management		
Strategy; Fringe Benefits, Fringe Benefits a	and Current Practices, Internal	Audit of Compensa	ition and Benefits;		
Different types of Direct and Indirect con	npensation include: Base Pay	/ Base pay; Comm	issions; Overtime		
Pay; Bonuses, Profit Sharing, Merit Pay; S	tock Options; Travel/Meal/Ho	using Allowance; F	Benefits including:		
dental, insurance, medical, vacation, leaves	, retirement, taxes; Merit pay;	Incentive Pay; Defe	rred Pay; Pay for		

time; Recreational facilities Module-4

(9 Hours)

Contingent Pay, Pay for Performance, Competence: Competency-Based Pay, Skill-Based Pay, Team-Based Rewards, Gainsharing, Profit-Sharing Profit-Related Pay and Beyond Other Cash Payments and Allowances Overtime Payments Attendance Bonuses, Shift Pay, Clothing Allowances, Honoraria, Payments for Qualifications, Pay for Person, Pay for Excellence, Managerial Compensation and Rewards, Sales Force Incentive Programmes, Competency based Pay- Framework, Model and Challenges; Pay for Performance : Steps involved in the design for pay for performance - Intent ; Eligibility; Participation; Performance and Goal Criteria-Measurements ; Funding; Pay Outs and Timing; Benefits Impact & Administration; Evaluation.

Module-5 (9 Hours)

Administration & Controlling Salary Costs and Salary Review: Salary Survey data, Salary Costs, Salary Planning, Salary Budget, Salary Control, Salary Reviews, Guidelines for Salary Review Process, Responding to Negative Salary Review, Five Key Steps: Manager's Guide to Annual Salary Review, Fixing of Salary, Method of Paying Salary, Flexibility, Process of Wage and Salary Fixation.

Module-6 (9 Hours)

Operating, Non-financial Benefits(Intrinsic and Relational Rewards: Role of Non-financial Benefits/Rewards on Employee Motivation, Types of Non-financial Benefits/Rewards, Planning the Non-financial Benefits/Rewards, A Few Most Effective Non-Financial Benefits/Rewards to Motivate Employees, Heineken's Refreshing Approach to Reward, Non-financial Metrics Intellectual Capital Assessment and Market Implications of Human Capital, Recognition, Praise, Learning and Development, Achievement, Value Addition in Personality Others.

HUMAN RESOURCE MANAGEMENT						
Course Code	22MBA21	CIE Marks	50			
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50			
Total Hours of Pedagogy	50	Total Marks	100			
Credits	04	Exam Hours	03			
Course Learning objectives: The stude	nt will be able to					
• Recite the theories and various f	• Recite the theories and various functions of Human Resources Management					
• Describe and explain in her/his own words, the relevance and importance of Human						
Resources Management at work	place					
• Apply and solve the workplace	problems through Human Re	esources Manageme	nt intervention			
Compare and contrast different a	approaches of HRM for solv	ing the complex iss	ues and			
problems at the workplace						
Design and develop an original	framework and model in dea	aling with the proble	ems in the			
organization.						
Module-1 (7 Hours)						
Introduction HRM: Introduction, mea	ning, nature, scope of HRM	I, Importance and E	volution of the			
concept of HRM, Major functions of H	IRM, Principles of HRM. I	Human Resource Ma	anagement and			
Personnel Management, Models of H	luman Resource Managem	ent, HRM in India	i, The Factors			
Influencing Human Resource Manager	ment, The HR Competencie	es, Human Resource	e Management			
and Firm Performance.						
Module-2 (9 Hours)						
HR Planning: Importance of HR Plan	ning, Manpower Planning t	to HR Planning, Fac	ctors Affecting			
HR Planning, Benefits of HR Planning,	HRP Process, Tools for De	mand Forecasting, A	Attributes of an			
Effective HR Planning, Barriers to HR	Planning, The Challenges fo	or HR, Process of Jo	b Analysis,			
Job Description and Job Evaluation.			T CL ·			
Recruitment and Selection: Importan	ce of Recruitment, Recruit	ment Policies, Facto	ors Influencing			
Strate and Entropy Transfer in Descritting	Sources, Evaluation of R	ecruitment Process	, Recruitment			
Strategy, Future Trends in Recruitme	ent; Selection Process; Sel	ection Tests; Facto	ors influencing			
Selections.						
Module-3 (9 Hours)						
Performance Management and App	raisal: Objectives of Perfor	mance Managemen	t, Performance			
Management and Performance App	raisal, Common Problems	s with Performance	ce Appraisals,			
Performance Management Process, Types of Performance Rating Systems, Future of Performance						
Management.						
Forms of Pay, External and Internal Eac	uon, Denniuons, 10tal Con	ipensation, Total Re Employee Repetit				
Industrial Relations. Decent Workpl	ace International Labour (Organisation Indust	s. trial Relations			
The Objectives of Industrial Relations	Approaches of Industrial	Relations Systems	The Actors in			
Industrial Relations. Indian Context. Ind	lustrial Relations and Huma	n Resource Manage	ment.			
Module-4 (9 Hours)						

Human Resource Management in Small and Medium Enterprises: Introduction to SMEs, The Difference in Adoption of Human Resource Management, SMEs and Large Firms, Indian Experience, Impact of Weak Adoption of Human Resource Management in SMEs,

Human Resource Management in the Service Sector: Introduction, The Emergence of the Services Sector, Implications for Human Resource, Management Function, Differences Between Services Sector and the Manufacturing Sector, Difference in Human Resource Management in Services and Manufacturing Sectors, Human Resource Management and Service Quality Correlation, Trade Unions in Services Sector, Models of Union Strategies.

Module-5 (9 Hours)

Human Resource Management and Innovations: Factors Affecting the Innovation Process in organisations, Current Trends in Human Resource Management, Innovative Human Resource Management Practices in India, Sustainable and innovative Human Resource Management.

Module-6 (7 Hours)

Future trends in Human Resource Management: Hybrid work model, Employee skill development, Internal mobility, Diversity and inclusion in workforce, People analytics, Employee well-being, Multi-generational workforces and All-in-One HR tools.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full questions from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

Industrial Relations And legislations					
Course Code	22MBAHR304	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50		
Total Hours of Pedagogy	50	Total Marks	100		
Credits	04	Exam Hours	03		

Course Learning Objectives:

This course will enable the students

- To describe and Identify the application of Labour Laws regulating Industrial Relations in Organisation
- To describe and explain in her/his own words, the relevance and importance of Labour Laws and Industrial Relations in Organisation
- To apply and solve the workplace problems through Labour Laws
- To classify and categorise different Laws and Codes
- To create and reconstruct Industrial Relations System to be adopted in the Organisation
- To appraise and judge the practical applicability of Labour Laws regulating Industrial Relations in Organisation

Module-1 (9 Hours)

Introduction – Industrial Relation: Definitions, Scope, Objectives, Types, Characteristics, Importance, approaches of Industrial Relations, Model of Industrial relations, Recent Trends in Industrial Relations, Managing IR Changes. The Participants of Industrial Relation Activities.

Module-2 (9 Hours)

Evolution of Labour Legislation in India - History of Labour Legislation in India, Objectives of Labour Legislation, Types of Labour Legislations in India, Constitutional Provisions for the Protection of Labour Workforce in India, Rights of Woman Workers; The Present Labour Laws and Codes. **Concept and steps of Grievance,** Need for a Grievance Redressal procedure, Legislative aspects of the grievance redressal procedure in India, Model of Grievance redressal Procedure.

Module-3 (9 Hours)

Collective bargaining: Concept – function and Importance – principles and forms of Collective bargaining, importance of Collective Bargaining, Process of Collective Bargaining, Negotiation, form of negotiation

Workers' Discipline Management, causes of indiscipline, disciplinary Action - service rules, misconduct, investigation of allegations, showcase notice, charge sheet, domestic enquiry, Report of findings, punishments to be imposed. Workers participation In Management.

Module-4 (9 Hours)

Introduction to Employee Relation, meaning and significance of employee relation in industry, Advantages and limitations of maintaining employee relations through unions. Legal provisions to maintain employee relation- works committee, conciliation, board of conciliation, voluntary arbitration, and adjudication.

Module-5 (9 Hours)

Factory Act 1948, Contract labour Act (Regulation and Abolition)Act 1970, The Payment of Wages Act, 1936 – the Minimum Wages Act, 1948.

Module-6 (7 Hours)

Industrial Dispute Act 1947, Trade Union act 1926. Employee State Insurance Act 1948, Employee Compensation Act 1923, Maternity Benefit Act 1961, Employee provident Fund and Miscellaneous Provisions Act 1952, Gratuity Act 1972, Bonus Act 1965.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full question from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

Suggested Learning Resources:

Books

- 1. Industrial relation, S. Venkata Ratam and Manoranjan Dhal, Oxford Publicatio, 2017 (2nd edition).
- 2. Essentials of HRM and Industrial Relation, Rao, P Subba, Himalaya Publishing House, 2013 (5th edition).
- 3. Industrial Relations, Trade Union and Labour Legislation. PRN Sinha, Indu Bala Sinha, Seema Shekhar, Pearson, 2017 (3rd edition).
- 4. Industrial Relations and Labour Laws-Emerging Paradigms, B.D.Singh, Excel Book, 2008.

Web links and Video Lectures (e-Resources):

12.01.2023

Principles of Management and Organisational Behaviour					
Course Code	22MBA11	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50		
Total Hours of Pedagogy	50	Total Marks	100		
Credits	04	Exam Hours	03		

Course Objectives: This course will enable the students

- To understand theories and models of Management and OB.
- To classify and differentiate between various methods of problem solving.
- To compile an adept framework for solving the problems at the workplace.
- To acquaint the students with industry relevant skill sets.

Module-1 (8 Hours)

Introduction: Meaning, Objectives, Differences between Administration and Management, Levels of Management, Kinds of Managers, Managerial roles, History of Management, Recent trends in Management.

Module-2 (9 Hours)

Planning: Importance, Process, Benefits of Planning, Types of Plans, Planning tools and techniques. **Organising:** Meaning, Types of Organisation structures, Traditional structures, Directions in organisation structures.

Leading: Meaning, Nature, Traits and Behaviour, Contingency approaches to Leadership, Transformational leadership.

Controlling: Meaning, Importance, Steps in the control process, Types of Control.

Module-3 (9 Hours)

Organisational Behaviour: Introduction, Meaning, History of Organisational Behaviour, Organisational effectiveness, Organisational learning process, Stakeholders, Contemporary challenges for Organisations.

Module-4 (9 Hours)

Behavioural Dynamics: MARS Model of individual behaviour and performance, Types of Individual behaviour, Personality in Organisation, Values in the work place, Types of values, **Perception,** Meaning, Model of Perceptual process. Emotions in work place, Types of emotions, Circumplex Model of Emotion, Attitudes and Behaviour, Work-related stress and its management. **Motivation,** Meaning, Maslow's Hierarchy of Needs, Four Drive Theory of Motivation.

Module-5 (9 Hours)

Teams: Advantages of Teams, Model of Team Effectiveness, Stages of Team Development. Power, Meaning, Sources, and Contingencies of Power, Consequences of Power.

Module-6 (7 Hours)

12.01.2023

Culture: Meaning, Elements of Organisational Culture, Importance of Organisational Culture. Organisational Change, Meaning, Resistance to change, Approaches to Organisational Culture, Action Research Approach, Appreciative Inquiry Approach, Large Group Intervention Approach, Parallel Learning Structure Approach, and Ethical issues of Organisational Behaviour.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full question from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

Suggested Learning Resources:

Books

- 1. MGMT , Chuck Williams & Manas Ranjan Tripathy, 5/e, Cengage Learning, 2013.
- 2. Organizational Behavior, Steven L. McShane & Mary Ann Von Glinow, 6/e, McGraw Hill Education, 2015.
- 3. Management & Organisational Behaviour, Laurie J. Mullins, 7/e, Prentice Hall, 2005.
- 4. Essentials of Management, Koontz, McGraw Hill, 8/e, 2014.
- 5. Management, John R. Schermerhorn, Jr., 8/e, Wiley India, 2010.

3rd Semester MBA HR Electives

RECRUITMENT AND SELECTION						
Course Code	22MBAHR303	CIE Marks	50			
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50			
Total Hours of Pedagogy	50	Total Marks	100			
Credits	04	Exam Hours	03			
Course Learning Objectives:						
This course will enable the students						
• To recite the theories and variou	s steps involved in Recruit	ment and Selection				
• To describe and explain in her/	his own words, the relevan	nce and importance	of Recruitment			
and Selection in the Organizatio	n					
• To apply and solve the workplace	e problems through Recrui	itment and Selectior	n intervention			
• To classify and categorize in	differentiating between the	he best method to	be adopted by			
organization related to Recruitm	ent and Selection					
• To compare and contrast differ	ent approaches of Recruit	ment and Selection	framework for			
solving the complex issues and p	problems					
• To design and develop an origin	nal framework and framew	ork in dealing with	the problems in			
the organization.						
Module-1 (8 Hours)						
Workforce Planning and Recruitmen	t Analytics:	(1	Classic			
concept of work, Organisation's work	The Evolution of Work	the work place; Key	Characteristics			
Stratagia Jab Badagian and Ita Par	The Evolution of Work	Structure; Organis	sing the work;			
Bacruitment: Overview of the Hiring I	Process: Pacruitment Metr	ics: Eactors Affecti	na Pecruitment:			
Recruitment, Overview of the fining f	proach. Recruitment Strate	egy: An External A	approach: Legal			
and Ethical Considerations: Organisatio	nal Best Practices	egy. An External A	ippioaen, Legui			
	nui Dost i ruoticos.					
Module-2 (9 Hours)						
Job Analysis, Job Description and Jo	b Design:					
Identify the Job to Examine; Determine	ne Appropriate Information	n Sources and Coll	ect Job-Related			
Data; Job Description; Competency and Competency Ice Berg Model; Why Competency Based						
Recruitment; Sources of Recruitment;	Different steps of job sear	ch; Motivational Jo	b Specification;			
Creation of Functional Specification;	Creation of Behavioural	Specification; Emp	loyer branding;			
Social Media; Job Design.						

Module-3 (9 Hours)

Job Evaluation:

The Job Evaluation Process; Obtain Job KSAOs, Qualifications, Working Conditions, and Essential Duties; Examine Compensable Factors Using the Rating/Weighting Evaluation Method; Determine Overall Job Value; Hay Group—Pioneer in Job Evaluation; Determining Compensation using Job Evaluation Data; Legal and Ethical Considerations for Job Evaluation; Online Salary Survey.

Module-4 (9 Hours)

Selection and Interview Strategy:

Interview Strategy and Process; Millennials shaping the Recruitment landscape in the organizations; Strategies for recruiting and selecting Generation Y into the workforce Developing Effective. Interviewers; Interviewing Techniques; Legal and Ethical Considerations in the Interview Process; The overall BEI Process; Assessment Centre's; Simulations.

Module-5 (9 Hours)

Testing and Assessment:

Testing in Occupational Selection; Test related to Assessment of Knowledge, Skills, and Abilities; Personality Assessment; The Birkman method and MBTI® comparison; FIRO-B; Honesty and Integrity Assessment; Various Non-Interviewing Methods; Graphology; Skills Assessment; Games and Group Activity for Leadership Assessment; Administration of Tests and Assessments; Key Interviewer Skills.

Module-6 (7 Hours)

Making the Hire; Assessment of Candidate and Job Fit:

Unique Recruitment strategies; Biodata and Application Forms; Implications of Using Social Media Content in Hiring Decisions; Background Checks; Reference Checks; Pre-employment Testing; Making a Job Offer; Transitioning from Job Candidate to Employee; Induction; Placement.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full questions from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

3rd Semester MBA Marketing Electives

CONSUMER BEHAVIOUR					
Course Code	22MBAMM303	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50		
Total Hours of Pedagogy	50	Total Marks	100		
Credits	04	Exam Hours	03		

Course Learning objectives:

- To develop an understanding of consumer behaviour theories and apply this understanding in a marketing decision making context.
- To identify the multitude of factors influencing consumers so that each of us will be able to apply this knowledge to improve market strategy.
- To Create better marketing programs and strategies basing on the knowledge of consumer behaviour.

Module-1 (7 Hours)

Introduction to consumer behaviour: Meaning of Consumer Behaviour; Difference between Consumer & Customer; Nature & characteristics of Indian Consumers; Consumerism: meaning; Consumer Movement in India; Rights & Responsibilities of consumers in India; Benefits of consumerism.

Module-2 (9 Hours)

Consumer Decision Making: Consumer Buying Decision Process, Levels of Consumer Decision Making – Four views of consumer decision making. On-line Decision Making: Meaning & Process/Stages. Situational Influences- Nature of Situational Influence, Situational Characteristics and consumption behaviour. Models of Consumer Behaviour: Input-Process-Output Model, Nicosia Model, Howard Sheth Model, Engel-Kollat-Blackwell Models of Consumer Behaviour, Class Exercise: Conducting consumer experiments.

Module-3 (9 Hours)

Motivation: Basics of Motivation, Needs, Goals, Positive & Negative Motivation, and Rational Vs Emotional motives, Motivation Process, Arousal of motives, Selection of goals. Motivation Theories and Marketing Strategy - Maslow's Hierarchy of Needs, McGuire's Psychological Motives.

Personality: Basics of Personality, Theories of Personality and Marketing Strategy (Freudian Theory, NeoFreudian Theory, Trait Theory), Applications of Personality concepts in Marketing, Personality and understanding consumer diversity, Brand Personality, Self and Self-Image.

Perception: Basics of Perception & Marketing implications, Elements of Perception, Dynamics of Perception, Influence of perception on consumer behavior, Consumer Imagery, Perceived price, Perceived quality, price/quality relationship, Perceived Risk, Types of risk, How to consumers'
handle risk.

Module-4(9 Hours)

Learning: Elements of Consumer Learning, Marketing Applications of Behavioural Learning Theories, Classical Conditioning – Pavlovian Model, Instrumental Conditioning.

Attitude: Basics of attitude, the nature of attitude, Models of Attitude and Marketing Implication, (Tricomponent Model of attitude, Multi attribute attitude models. Elaboration Likelihood Model).

Persuasive Communication: Communications strategy, Target Audience, Media Strategy, Message strategies, Message structure and presentation.

Module-5 (9 Hours)

Social Class: Social Class Basics, What is Social Class? (Social class & Social status, the dynamics of status consumption), Features of Social Class, Five Social-Class Categories in India.

Culture: Basics, Meaning, Characteristics, Factors affecting culture, Role of customs, values and beliefs in Consumer Behaviour. Subculture: Meaning, Subculture division and consumption pattern in India, Types of subcultures. Cross Culture - Cross-cultural consumer analysis - Cross-cultural marketing strategy: Cross-cultural marketing problems in India, Strategies to overcome cross-cultural problem

Groups: Meaning and Nature of Groups, Types Family: The changing structure of family, Family decision making and roles in decision making, Dynamics of husband-wife decision making, The family life cycle & marketing strategy, Traditional family life cycle & marketing implications,

Reference Groups: Understanding the power & benefits of reference groups, Types of reference group, Reference Group Appeals.

Module-6 (7 Hours)

Opinion Leadership: Dynamics of opinion leadership process, Measurement of opinion leadership, Market Mavens, Opinion Leadership & Marketing Strategy, Creation of Opinion Leaders.

Diffusion of Innovations: Diffusion Process, Adoption Process: Stages, categories of adopters, Post Purchase Processes.

Customer Relationship Management- Meaning & Significance of CRM, Types of CRM Strategies for building relationship marketing,

DIGITAL AND SOCIAL MEDIA MARKETING			
Course Code	22MBAMM405	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	2:2:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning Objectives:

This course will enable the students

- Understand how and why to use digital marketing for multiple goals within a larger marketing and/or media strategy.
- Understand the major digital marketing channels online advertising: Digital display, video, mobile, search engine, and social media.
- Learn to develop, evaluate, and execute a comprehensive digital marketing strategy and plan.
- Learn how to measure digital marketing efforts and calculate ROI.
- Explore the latest digital ad technologies.

Module-1 (5 Hours)

Digital Marketing Overview: Concept of Digital Marketing, Traditional Vs Digital Marketing, Understanding Digital Marketing Process, Digital Landscape. Digital advertising Market in India. Skills required in Digital Marketing, Digital Marketing Planning and Strategy.

Module-2 (6 Hours)

Display Advertising: Concept of Display Advertising, types of display ads, buying models, display plan, Segmenting and customizing Messages, Targeting- contextual targeting placement targeting, remarketing, interest categories, geographic and language tagging. Programmatic digital advertising, You Tube Advertising. The P-O-E-M Framework.

Module-3 (7 Hours)

Digital Advertising (PPC, Digital Display and YouTube campaign): Google Ad Words Overview; Understanding AdWords Algorithm; Creating Search Campaigns; Understanding Ad Placement, Understanding Ad Ranks, Types of Search Campaigns - Standard, All features, dynamic search & product listing. Tracking

Performance/Conversion: conversion tracking and its importance, setting up of conversion tracking, Optimizing Search Ad Campaigns. Display ads and its features, Types of display campaigns, Creating Display Campaign, Optimizing Display Campaign and Re-marketing, customer engagement on eportals.

Concept of Online Advertising: Types of Online Advertising, Contextual advertising, Payment Modules, Different Online advertising platforms Creating Banner Ads Using Tools

Module-4 (8 Hours)

Emerging trends in Digital Marketing: Affiliate Marketing- Affiliate marketing history, Affiliate marketing scenario in India, Different ways to do affiliate marketing.

Email Marketing- email marketing and process. Types of email marketing- Opt-in & bulk emailing; Setting up email marketing account, creating a broadcast email. auto responders, Setting up auto responders; Tricks to land in inbox instead of spam folder;

Social Media Marketing-Concept **of** social media marketing, Understanding Facebook marketing, LinkedIn Marketing, Twitter Marketing, Video Marketing **and** VIDEO & AUDIO (PODCASTING) marketing; **and**

Content Marketing-Introduction to content marketing, Objective of content marketing, Content marketing 7 step strategy building process, writing a great compelling content, optimizing content for search engines, opt-in email list with content marketing examples.

Module-5 (7 Hours)

Search Engine Optimization (SEO): Introduction to SEO. Search engine Major functions and operating algorithm, Introduction to SERP, search engine keywords and types, Google keyword planner tool; Keywords research process; Understanding keywords; On page optimization; Off Page optimization; Top tools for SEO; Monitoring SEO process; Preparing SEO reports, creating SEO Strategy, link juice, Importance of domain and page authority, Optimize exact keywords for impactful search. Google Panda Algorithm, Google Penguin and Google EMD Update. How to save your site from Google Panda, Penguin and EMD Update, how to recover your site from Panda, Penguin and EMD.

Module-6 (7 Hours)

E-Commerce and Payment Gateway: Concept of e-commerce, Top ecommerce websites around the world, software Payment Gateways, Merchant Accounts & Logistics for physical goods. Integrating Woo-commerce and setting up an ecommerce store on Word Press. Case studies on ecommerce websites. Google Product Listing Ads (PLA) for ecommerce websites. Practical Process of SEO for an ecommerce website.

MARKETING MANAGEMENT			
Course Code	22MBA15	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives:

- To make students understand the fundamental concepts of marketing and environment in which marketing system operates.
- To gain knowledge on consumer buying behaviour and influencing factors
- To describe major bases for segment marketing, target marketing, and market positioning.
- To develop a Conceptual framework, covering basic elements of the marketing mix.
- To understand fundamental premise underlying market driven strategies and hands on practical approach.

Module-1 (7 Hours)

Introduction to Marketing: Importance of marketing, Definitions of market and marketing, Types of Needs, Elements of Marketing Concept, Functions of Marketing, evolution of marketing, Marketing V/s Selling, Customer Value and Satisfaction, 4P's of Marketing, Marketing Environment, Techniques used in environment analysis, Characteristics (Micro and Macro), Marketing to the 21st century customer.

Module-2 (9 Hours)

Analysing Consumer Behaviour: Meaning and Characteristics, Importance of consumer behaviour, Factors influencing Consumer Behaviour, Consumer characteristics influencing buying behaviour personal factors and cultural factors. Consumer Buying Decision Process, Buying Roles, Buying Motives. The black box model of consumer behaviour. Psychological factors consumer.

Module-3 (9 Hours)

Product management and Pricing: Importance and primary objective of product management, product levels, product hierarchy, Classification of products, product mix, product mix strategies, Managing Product Life Cycle. New Product Development, packing as a marketing tool, Role of labeling in packing. Concept of Branding, Brand Equity, branding strategies, selecting logo, brand extension- effects. Introducing to pricing, Significance of pricing, factor influencing pricing (Internal factor and External factor), objectives, Pricing Strategies-Value based, Cost based, Market based, Competitor based, Pricing Procedure.

Module-4 (9 Hours)

Distribution and Promotion: Roles and purpose of Marketing Channels, Factors Affecting Channel Choice, Channel Design, Channel Management Decision, Channel Conflict, Designing a physical Distribution System. Promotions- Marketing communications- Integrated Marketing Communications (IMC)-communication objectives, steps in developing effective communication. Advertising: Advertising Objectives, Advertising Budget, Advertising Copy, AIDA model, Traditional Vs Modern Media- Online and Mobile Advertising, social media for Advertising. Push-pull strategies of promotion.

Module-5 (9 Hours)

Market segmentation, Targeting and Brand Positioning: Concept of Market Segmentation, Benefits, Requisites of Effective Segmentation, Bases for Segmenting Consumer Markets, Market Segmentation Strategies. Types of Segmentation. Targeting - Bases for identifying target Customer target Marketing strategies, Positioning - Meaning, Tasks involved in Positioning. Monitoring brands performance and positioning. Product Differentiation Strategies.

Module-6 (7 Hours)

Emerging Trends in Marketing: Marketing Planning. Concepts of B2B marketing, Service Marketing, Digital and social media Marketing, Green Marketing, Event Marketing, Marketing Audit, Sponsorship, Cause Related Marketing, Marketing for Non-Profit Organizations, Relationship marketing, Marketing Strategies for Leaders, Challengers, Followers and Startups. Social Responsibility of marketing, Neuro Marketing, Sensory Marketing, societal marketing concept, premiumization.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full questions from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.

4th Semester MBA Marketing Electives

STRATEGIC BRAND MANAGEMENT			
Course Code	22MBAMM403	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	2:2:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives:

- To appreciate the relationship between corporate strategy and Brand Management.
- To explore the various issues related to Brand Management, brand association, brand identity, brand architecture, leveraging brand assets, brand portfolio management.
- To develop familiarity and competence with the strategies and tactics involved in building, leveraging and defending strong brands in different sectors.

Module-1 (7 Hours)

Introduction: Meaning of Brand, Concepts, Evolution of Brands, Functions of Brand to consumer, Role of Brand-Advantages of Brand, Product Vs Brand. **Branding-** Meaning, Creation of Brands through goods, services, people, Organization, Retail stores, places, online, entertainment, ideas, challenges to Brand builders. **Brand Management-**Meaning & Definition. Strategic Brand Management Process-Meaning, Steps in Brand Management Process, Strong Indian Brands.

Module-2 (5 Hours)

Meaning, Model of CBBE: Brand Equity: Meaning, Sources, Steps in Building Brands, Brand building blocks Resonance, Judgments, Feelings, performance, imagery, salience-Brand Building Implications, David Aaker's Brand Equity Model. Brand Identity & Positioning: Meaning of Brand identity, Need for Identity & Positioning, Dimensions of brand identity, Brand identity prism. Brand positioning: Meaning, Point of parity & Point of difference, positioning guidelines, Brand Value: Definition, Core Brand values, Brand mantras, Internal branding.

Module-3 (7 Hours)

Meaning of Brand Knowledge: Dimensions of Brand Knowledge, Meaning of Leveraging Secondary Brand Knowledge & Conceptualizing the leverage process. Criteria for choosing brand elements, options & tactics for brand elements-Brand name, Naming guidelines, Naming procedure, Awareness, Brand Associations, Logos & Symbols & their benefits, Characters & Benefits, Slogans & Benefits, Packaging. Leveraging Brand Knowledge.

Module-4 (7 Hours)

Brand hierarchy, Branding strategy, Brand extension and brand transfer, Managing Brands overtime. Brand Architecture and brand consolidation. Brand Imitations: Meaning of Brand Imitation, Kinds of imitations, Factors affecting Brand Imitation, Imitation Vs Later market entry,

First movers advantages, Free rider effects, Benefits for later entrants, Imitation Strategies.

Module-5 (7 Hours)

Establishing brand Equity Management Systems. Methods for measuring Brand Equity-Quantitative Techniques & Quantitative Techniques, Making Brands go Global: Geographic extension, sources of opportunities for global brand, single name to global brand, consumers & globalization, conditions favoring marketing, barriers to globalization, managerial blockages.

Module-6 (7 Hours)

Global branding: Organization for a global brand, pathways to globalization. Luxury Brand Management: Luxury definition and relativity, luxury goods and luxury brands, basic psychological phenomena associated with luxury purchase, luxury marketing mix, luxury retail, international luxury markets: historical leaders and emerging countries.

SECURITY ANALYSIS AND PORTFOLIO MANAGEMENT			
Course Code	22MBAFM304	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives:

- To acquaint students with fundamental concepts of capital market and its instruments.
- To understand techniques to evaluate and analyze risk and return characteristics of securities such as individual stocks, mutual funds etc.
- To provide basic knowledge of the theories and practices of modern portfolio choice and investment decision

Module-1 (6 Hours)

Introduction to Investment: Investment Avenues, Attributes, Investor V/s speculator, Features of a good Investment, Investment Process.

Financial Instruments: Money Market Instruments, Capital Market Instruments, Derivatives.

Securities Market: Trading & Settlement Procedure, Stock Market Indicators- Indices of Indian Stock Exchanges (only Theory).

Module-2 (9 Hours)

Return and Risk Concepts: Concept of Risk, Causes of Risk, Types of Risk- Systematic risk-Market Price Risk, Interest Rate Risk, Purchasing Power Risk, Unsystematic Risk- Business risk, Financial Risk, Insolvency Risk, Risk-Return Relationship, Concept of diversifiable risk and nondiversifiable risk. Calculation of Return and Risk of Individual Security & Portfolio (Theory & Problems).

Module-3 (9 Hours)

Valuation of Securities: Bond – Meaning, features, types, determinants of interest rates, Bond Valuation, Bond Duration, Bond Management Strategies. Preference Shares- Concept, Valuation. Equity Shares- Concept, Valuation, Dividend Valuation Models, P/E Ratio valuation model. (Theory & Problems).

Module-4 (8 Hours)

Fundamental & Technical Analysis: Macro-Economic and Industry Analysis: Fundamental analysis-EIC Frame Work, Economy Analysis, Industry Analysis, Company Analysis- Financial Statement Analysis. Market Efficiency: Efficient Market Hypothesis, Forms of Market Efficiency, Empirical test for different forms of market efficiency. Technical Analysis – Concept, Theories- Dow Theory, Eliot Wave theory. Charts-Types, Trends and Trend Reversal Patterns. Mathematical Indicators –Moving Average Convergence-Divergence, Relative Strength Index (Theory only).

Module-5 (9 Hours)

Modern Portfolio Theory: Markowitz Model- Diversification, Portfolio Return, Portfolio Risk, Efficient Frontier. Sharpe's Single Index Model, Capital Asset Pricing Model: Assumptions, CAPM Equation, Capital Market Line, Security Market Line, CML V/s SML. Sharpe's Optimum Portfolio Construction. (Theory & Problems).

Module-6 (9 Hours)

Portfolio Management Strategies and Performance Evaluation: Portfolio Management Strategies: Active and Passive Portfolio Management strategy. Portfolio Revision: Portfolio Revision Strategies – Objectives, Performance plans. Mutual Funds: Concept of Mutual Funds, Participants in Mutual Funds, Advantages of Investment in Mutual Fund, Measure of Mutual Fund Performance. Portfolio performance Evaluation: Measures of portfolio performance (Theory & Problems).

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full question from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.
- 40 percent theory and 60 percent problems in the SEE.

Accounting for Managers			
Course Code	22MBA13	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives:

- To enable the students to understand the conceptual framework of accounting, reporting and financial statements.
- To enable the students in preparation of books of accounts and accounting records leading to final accounts and interpretation there-off.
- To acquaint the students with interpretation of accounting information and analyses of financial statements for decision making.

Module-1 (7 Hours)

Introduction to Accounting: Meaning and objectives, Need and Types of Accounting, Single Entry System, Double Entry System, Basics of Generally Accepted accounting Principles (GAAP), IFRS, Indian Accounting Standards. Concepts and Conventions of Accounting. (Theory only)

Module-2 (9 Hours)

Accounting Cycle: Journal, Ledgers, Trial balance, Accounting equation, Users of Accounting information, subsidiary books including cash book with two and three column cashbook only. (Theory and Problems).

Module-3 (9 Hours)

Final Accounts of companies: Preparation of final accounts of companies in vertical form as per Companies Act of 2013 (Problems of Final Accounts with adjustments), Window dressing. Case Study problem on Final Accounts of Company-Appropriation accounts. (Theory and Problems).

Module-4 (9 Hours)

Analysis of Financial Statements: Meaning and Purpose of Financial Statement Analysis, Trend Analysis, Comparative Analysis, Financial Ratio Analysis, Preparation of Financial Statements using Financial Ratios, Case Study on Financial Ratio Analysis. Preparation of Cash flow Statement (indirect method). Lab compulsory for Financial Statement Analysis using Excel. (Theory and Problems).

Module-5 (6 Hours)

Bank Reconciliation statement: Rules for recording Receipts and Payments in cash book and bank pass book, reasons for differences in the balances of cash book and bank pass book. Meaning and Preparation of Bank reconciliation statement with Tally. (Theory and Problems).

Module-6 (10 Hours)

Depreciation and Emerging Issues in Accounting: Depreciation: Meaning, characteristics and causes of depreciation, Types of Depreciation. Tax implication of depreciation. (Problems only on straight line and WDV method).

Direct Taxation: Basic Concepts and definitions, Capital and revenue – receipts, expenditures, Basis of charge and scope of total income, Tax Planning, Tax Evasion and Tax Management, (Theory Only).

Emerging Issues in Accounting: Human Resource Accounting, Forensic Accounting, Green Accounting, Sustainability Reporting. (Theory only).

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full question from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.
- 40 percent theory and 60 percent problems in the SEE.

Suggested Learning Resources:

Books

- 1. Financial Accounting: A Managerial Perspective, Narayanaswamy R, 5/e, PHI, 2014.
- 2. A Text book of Accounting For Management, Maheswari S. N, Maheswari Sharad K. Maheswari , 2/e, Vikas Publishing house (P) Ltd.
- 3. Computerized Accounting, Neeraj Goyal, Rohit Sachdeva, Kalyani Publishers, 1e, 2018.
- 4. Accounting for Management-Text & Cases, S.K.Bhattacharya & John Dearden, Vikas Publishing House Pvt. Ltd., 3e, 2018.
- 5. Accounting and Finance for Non-finance Managers, Jai Kumar Batra, Sage Publications, 1e, 2018.
- 6. Financial Accounting, Jain S. P and Narang K L, Kalyani Publishers.
- 7. Direct Taxes Law and practice, Vinod Singhania and Kapil Singhania, Taxman Publications.

Web links and Video Lectures (e-Resources):

Banking & Services Operations			
Course Code	22MBAFM306	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives:

- To understand the Structure and functions of Public sector Banks and Commercial Banking in India.
- To learn the functions of various Financial Services in India.
- To understand role of Banking and Financial Services in Business organizations
- To know the functioning of NBFC 's in India

Module-1 (8 Hours)

1Banking System and Structure in India: Types of banks –Public Sector, Regional Banks, Credit creation and Deployment of Funds. Role of Reserve Bank and GOI as regulator of banking system, Banking sector reforms, Provisions of Banking Regulation Act & Reserve Bank of India Act, Quantitative and Qualitative Measures of Credit Control, Recent trends in Banking- Banking Technology, Neo banking, Payment banking, Fintech, Crypto currency, Bank Performance analysis and Future of Banking. (Theory)

Module-2 (8 Hours)

Commercial Banking: Structure, Functions - Primary & Secondary functions, Services rendered. Concept of Universal Banking, Analysis of Banks' Financial statements, Financial statement of Banks, Comparison of bank ratios of Public sector banks, Private sector and Foreign banks operating in India. (Theory)

Module-3 (8 Hours)

Merchant Banking: Categories, Services offered, Issue management – Pre and Post issue management, Issue pricing, Preparation of Prospectus, Underwriting, Private Placement, Book Building Vs. Fixed price issues. (Theory)

Module-4 (10 Hours)

NBFCs; Micro-finance; Leasing & Hire Purchase Banking:

NBFCs: An Overview -Types of NBFCs in India- Growth, Functions and Regulatory framework. (Theory)

Micro-finance: The paradigm-NGOs and SHGs-Microfinance delivery mechanisms, Models Services, Challenges. -Future of Micro finance(Theory)

Leasing & Hire Purchase: Nature and scope of leasing, Types of leasing, Problems in Evaluation of Leasing. Nature and forms of Hire purchase agreements, Problems in Evaluation of Hire Purchase. (Theory and Problems)

Module-5 (8 Hours)

Credit Rating; Venture Capital; Depository System, Securitization of Debt:

Credit Rating: Meaning, Process, Methodology, Agencies And Symbol

Venture Capital: Concept, features, Process ,Stages. Private equity- Investment banking perspectives in private equity. Performance of Venture Capital Funded Companies In India.(Theory)

Depository System: Objectives of Depository System, Activities, NSDL& CDSL. Process of Clearing and Settlement.

Securitization of Debt: Meaning, process, Types, Benefits. (Theory)

Module-6 (8 Hours)

Mutual Funds -Meaning, Structure, Functions, Participants, Types of Funds, Types of Schemes, Performance of Mutual Funds, Factors contributing for the growth of mutual funds in India, Marketing of mutual funds. (Theory)

FINANCIAL MANAGEMENT			
Course Code	22MBA22	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	04	Exam Hours	03

Course Learning Objectives:

- To familiarise the students with basic concepts of financial management and financial system.
- To understand the concept of time value of money and its implication.
- To evaluate investment proposals.
- To understand the management of working capital in an organization.
- To analyse the capital structure and dividend decision of an organisation

Module-1 (7 Hours)

Introduction: Financial Management: Definition and scope- objectives of Financial Managementrole and functions of finance managers. Interface of Financial Management with other functional areas. **Indian Financial System:** Structure-types-Financial markets- Financial Instruments -Financial institutions and financial services- Non-Banking Financial Companies(NBFCs). Emerging areas in Financial Management: Risk Management- Behavioural Finance- Financial Engineering- Derivatives (Theory).

Module-2 (9 Hours)

Time value of money: Time value of money –Future value of single cash flow & annuity – Present value and discounting-present value of single cash flow, annuity & perpetuity. Simple interest & Compound interest - Capital recovery factor & equated annual instalments. (Theory & Problem).

Module-3 (9 Hours)

Long term sources of Finance & Cost of Capital: Shares- Debentures- Term loans and deferred credit-Lease financing- Hybrid financing- Venture Capital-Angel investing- private equity- Crowd funding (Theory Only). **Cost of Capital:** Basic concepts-Components and computation of cost of capital- Cost of debentures- cost of term loans- cost of preferential capital-cost of equity (Dividend discounting and CAPM model) - Cost of retained earnings - Determination of Weighted average cost of capital (WACC) (Theory & Problem).

Module-4 (7 Hours)

Capital structure and Dividend Decisions: Capital structure– Planning the capital structureoptimum capital structure- determination of capital structure- Governance of Equity and Debt-Leverages- EBIT and EPS analysis-Return of Investment (ROI) &Return on Earnings (ROE) analysis.(Theory & Problem).

Dividend decisions & policies – Factors affecting the dividend policy – types of Dividend Policyforms of dividend-bonus issue-stock split (Theory only)

Module-5 (9 Hours)

Long term Investment Decisions (Capital Budgeting): Need and importance of capital budgeting and its process-Techniques of capital budgeting – [Payback period, time adjusted payback period, accounting rate of return, Net present value, Internal rate of return, Modified internal rate of return, Profitability index method,). Capital Rationing. Estimation of cash flows for new projects and replacement projects. (Theory & Problem).

Module-6 (9 Hours)

Working Capital Management: Sources of working capital- Factors influencing working capital requirements - Current asset policy and current asset finance policy- Determination of operating cycle and cash cycle - Estimation of working capital requirements of a firm. (Theory Only). Case study on Working Capital Determination and the impact of negative working capital.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

There shall be a maximum of 50 CIE Marks. A candidate shall obtain not less than 50% of the maximum marks prescribed for the CIE.

CIE Marks shall be based on:

a) Tests (for 25Marks) and

b) Assignments, presentations, Quiz, Simulation, Experimentation, Mini project, oral examination, field work and class participation etc., (for 25 Marks) conducted in the respective course. Course instructors are given autonomy in choosing a few of the above based on the subject relevance and should maintain necessary supporting documents for same.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.

- The question paper will have 8 full questions carrying equal marks.
- Each full question is for 20 marks with 3 sub questions.
- Each full question will have sub question covering all the topics.
- The students will have to answer five full questions; selecting four full questions from question number one to seven in the pattern of 3, 7 & 10 Marks and question number eight is compulsory.
- 40 percent theory and 60 percent problem in SEE.

Suggested Learning Resources:

Books

- 1. Financial Management: Text, Problems & Cases M.Y. Khan & P.K. Jain, TMH, 7/e, 2017
- 2. Financial Management: Theory and Practice, Prasanna Chandra, TMH, 10/e, 2019
- 3. Financial Management Dr. G. Nagarajan & Dr. Binoy Mathew, Jayvee Digital Publishing, 2/e, 2022
- 4. Financial Management, Prahlad Rathod, Babitha Thimmaiah and Harish Babu, HPH, 1/e, 2015.
- 5. Financial Management, I.M. Pandey, Vikas Publishing, 11/e.

Web links and Video Lectures (e-Resources):