

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICAL INTELLIGENCE AND DATA SCIENCES SESSION: 2023-2024 (ODD SEMESTER)

FIRST ASSIGNMENT

Degree	:	B.E	Semester	:	111	
Branch	:	Al&DS	Course Code :		BCS302	
Course Title	:	Digital design and Computer Organization	Max Marks :		10	
Date	:	28/12/2023	Last Date for :	:	/12/2023	
			submission			

Q No.	Question	Marks K- Level		CO mapping	
1	Identify all the prime implicants and essential prime implicants for the following Boolean function and obtain minimum sum of product using K-map i) $F(a,b,c,d)=\sum m(1,2,3,5,6,7,11,12,13,14,15)$ ii) $F(w,x,y,z)=\sum m(0,2,4,5,6,7,8,10,12,13,14,15)$ iii) $F(w,x,y,z)=\sum m(0,2,4,5,6,7,8,10,13,15)$	1	Applying K3	CO1	
2	Simplify the following Boolean function by using K map i) $F(a,b,c,d) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$ ii) $F(w,x,y,z) = \sum m(0,1,3,8,9,10,11,12,13,14,15)$ iii) $F(w,x,y,z) = \sum m(4,5,6,7,12)$ with don't-care function $d(w,x,y,z) = \sum m(0,8,13)$ iv) $F = \overline{ABC} + \overline{B}C\overline{D} + \overline{AB}C\overline{D} + \overline{ABC}$	1	Applying K3	CO1	
3	Simplify the following Boolean function by using K map i) $F(a,b,c,d) = \pi M(0,2,3,8,9,12,13,15)$ ii) $F(a,b,c,d) = \pi M(0,3,4,7,8,10,12,14)$ with don't- care function d= (2,6)	1	Applying K3	COI	
4	Simplify the following Boolean function into (a) sum of product form (b)product of sum form i. $F(w,x,y,z) = \sum m(0,2,8,10,12,13,14)$ ii. $F(A,B,C,D) = \sum m(0,2,8,10,12,13,14)$	1	Applying K3	C01	

5	Implement the following boolean functions with NAND gates i. $F(A,B,C,D)=A(CD+B)+B\overline{C}$ ii. $F(A,B,C,D)=(A \overline{B}+\overline{A} B)(C+\overline{D})$	1	Applying K3	CO1
6	Implement the following boolean functions with NOR gates i. $F(w,x,y,z)=(y+\overline{z})(w\overline{x}+\overline{w}x)$ ii. $F=(A\overline{B}+\overline{A}B)(C+\overline{D})$	1	Applying K3	CO1
7	 i) Explain the duality principle with an example. ii) Find the complement of the following functions x y z + x y z 2. A B C + A B C 	1	Applying K3	CO1
8	Write a verilog code for the circuit below	1	Applying K3	CO2
9	Design a BCD to excess code converter with a neat diagram.	1	Applying K3	CO2
10	 i) Design a combination circuit with three input and output. The output is 1 when the binary value of the input is less than or equal to 2. The output is zero otherwise. ii) Design a combinational circuit that gives output as 1 if the input variable has more 1's than 0's. The output is 0 otherwise. 	1	Applying K3	CO2

Course Incharge

HOD