

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109 DEPARTMENT OF CIVIL ENGINEERING 2023-24 EVEN SEMESTER

CO-PO Mapping

Type: (Contraction of the second s	of Structures	C	ourse Code: BC	V401		
			No of Ho			n - lan andre a na militar a sa ang	
Theory (Lecture Class)		Tutorials	Practical/Field Work/Allied Activities	Total/Week	Total hou	rs of Pedagogy	
	3	0	0	3	1	40	
			Marks		1 - 2117 2-		
	CIE		SEE	Total	Credits		
	50		50	100		3	
. To an . To aa C ourse	nalyze diffe nalyze diff Learning	erent types of b Outcomes	ams and frames usi eams and frames us rudents will be able	sing moment dist		hod.	
CO1	Identify th	Applying (K3					
CO2	Analyze a	Applying (K3)					
CO3	Analyze the deflection	Analyzing (K4)					
CO4	Analyze the distribution	Analyzing (K4)					
CO5	Evaluate moment ar	es by using	Applying (K3)				
			Syllabus Co	ntent			
equilibr Static a	ium, Compa nd kinematic	tibility conditions indeterminacies	sis of Plane Trusses: s, Degree of freedom of structural systems russes by method of j	, Linear and nonli , Types of trusses,	near analysis, Assumptions		

O: At the end of this session the student will be able to	PO1-3					
1. Define equilibrium; compatibility conditions; linear and non-linear systems;						
geometric and material non-linearity.	PSO1-3					
2. Explain statically determinate and indeterminate structures with examples.						
3. Distinguish between static and kinematic indeterminacies with examples.						
4. Determine the static and kinematic indeterminacies for the structures shown.						
5. Explain the salient features of stress-strain diagram for structural steel.						
6. Analyze the trusses shown using method of joints. Indicate the member forces and						
tabulate the results.						
7. Determine the member forces in the given truss using method of sections.						
Iodule 2: Arches and Cable Structures: Three hinged parabolic arches with supports at he same and different levels. Determination of normal thrust, radial shear and bending homent. Analysis of cables under point loads and UDL. Length of cables for supports at hame and at different levels- Stiffening trusses for suspension cables.						
	CO2					
O: At the end of this session the student will be able to,	002					
1. Determine the reaction components at supports for the given arch and evaluate	8 hrs					
the BM, normal thrust and radial shear at the given distance. Also sketch the BMD.	5					
2. Explain the method of deriving equations for cable profile and tension in the cable	PO1-3					
when it is supported at the same level and subjected to horizontal UDL.	PO2-3					
	PO12 -1					
3. Analyze the given cable and determine the length of the cable, max. and min.	PSO1-3					
 tensions developed in the cable and the size of the cable. Analyze the given cable and determine the forces in the tower when, (i) cable passes over smooth pulley (ii) cable passes over saddle. 	PSO2-2					
1odule 3: Slope Deflection Method: Introduction, sign convention, development of slope						
eflection equation; Analysis of continuous beams including settlement of supports;	CO 2					
nalysis of orthogonal rigid plane frames including sway frames with kinematic	CO3					
ndeterminacy up to 3.						
	8 hrs.					
O: At the end of this session the student will be able to,						
1. Analyze a propped cantilever subjected to UDL of w kN/m and span L, using slope-	PO1-3					
deflection method.	PO1-3					
2. Analyze the given beam by slope-deflection method and draw bending moment	PO12 -1					
diagram and shear force diagram.	PSO1-3					
, , , , , , , , , , , , , , , , , , ,	PSO2-2					
 Analyze the given frame by slope-deflection method and draw bending moment diagram and shear force diagram. 						
Aodule 4: Moment Distribution Method: Introduction, Definition of terms,						
	0.01					
levelopment of method. Analysis of continuous beams with support vielding Analysis of 1	CO4					
rthogonal rigid plane frames including sway frames with kinematic indeterminacy up to	0.1					
rthogonal rigid plane frames including sway frames with kinematic indeterminacy up to	8 hrs					
brthogonal rigid plane frames including sway frames with kinematic indeterminacy up to LO: At the end of this session the student will be able to,	8 hrs					
 Development of method, Analysis of continuous beams with support yielding, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy up to b. LO: At the end of this session the student will be able to, 1. Explain fixed end moments for different loading conditions with relevant diagrams. 	8 hrs PO1-3					

2. Analyze the given beam by moment-distribution method and draw bending	PO12 -1			
moment diagram and shear force diagram.	PSO1-3			
3. Analyze the given frame by slope-deflection method and draw bending moment	PSO2-2			
diagram and shear force diagram.				
Module 5: Deflection of Beams: Moment area method: Derivation, Mohr's theorems, sign				
convention; Application of moment area method to determinate prismatic beams, beams of				
varying cross section; Use of moment diagram by parts.	CO5			
Strain Energy: Principle of virtual displacements, Principle of virtual forces, Strain energy				
and complimentary energy, Strain energy due to axial force, bending, shear and torsion (No	8 hrs			
numerical). Castigliano's theorems, application of Castigliano's theorems to calculate				
deflection of beams, trusses and frames (No numerical on unit load method).				
	PO1-3			
LO: At the end of this session the student will be able to,	PO2-3			
1. State and explain Mohr's theorems.	PO12 -1			
2. State and explain Castigliano's first and second theorems.	PSO1-3			
	PSO2-2			
3. Derive expressions for strain energy due to (i) axial force (ii) bending (iii) shear (iv) torsion.				
4. State the principles of virtual displacements and forces.				
5. Analyze the given beam by moment-area method.				

Suggested Learning Resources:

Text Books

- 1. Reddy, C.S., Basic Structural Analysis, 3 rd. ed., Tata McGraw-Hill Education Pvt. Ltd., New Delhi, 2011.
- 2. Hibbeler, R.C., Structural Analysis, 9th edition., Pearson publications., New Delhi, 2012.
- 3. Thandavamoorthy, T.S., Structural Analysis, 6th edition., Oxford University press., New Delhi,2015.
- 4. L S Negi and R S Jangid, "Structural Analysis", Tata McGraw-Hill Publishing Company Ltd.
- 5.D S Prakash Rao, "Structural Analysis: A Unified Approach", Universities Press.
- 6.K.U. Muthu and H. Narendra, "Indeterminate Structural Analysis", IK International Publishing Pvt. Ltd.
- 7. Gupta S P, G S Pundit and R Gupta, "Theory of Structures", Vol II, Tata McGraw Hill Publications company Ltd.
- 8. V N Vazirani and M M Ratwani, "Analysis of Structures", Vol. 2, Khanna Publishers.
- Wang C K, "Intermediate Structural Analysis", McGraw Hill, International Students Edition. S. Rajashekhara and G. Sankarasubramanian, "Computational Structural Mechanics", PHI Learning Pvt. Ltd.
- 10. S S Bhavikatti, structural analysis, Vikas publishing house Pvt. Ltd., New Delhi.
- 11. S Ramamrutham and R Narayanan, Theory of Structures, Dhanpat Rai Publishing Company.

Web links and Video Lectures (e-Resources):

- 1. Structural Analysis I video course by IIT Kharagpur https://nptel.ac.in/courses/105105166.
- 2. Structural Analysis I video course by IIT Kharagpur https://nptel.ac.in/courses/105105109.

Useful Journals

- Journal of Structural Engineering.
- International Journal of Structural Engineering and Analysis.

Teaching and Learning Methods

1. Lecture class: 40 hrs

Assessment

Type of test/examination: Written examination

Continuous Internal Evaluation (CIE): 50 marks. Average of two internal assessment tests each of 25 marks. Sum of two assignments (each of 25 Marks) shall be scaled down to 25 Marks. **Semester End Exam (SEE)**: 100 marks (students have to answer all main questions) which will be scaled down to 50 Marks.

Test duration: 1 hrs

Examination duration: 3 hrs-

CO to PO MappingPO1: Science and engineering Knowledge
PO2: Problem AnalysisPO7:Environment and Sustainability
PO8:EthicsPO3: Design & Development
PO4:Investigations of Complex Problems
PO5: Modern Tool Usage
PO6: Engineer & SocietyPO7:Environment and Sustainability
PO9:Individual & Team Work
PO10: Communication
PO11:Project Management & Finance
PO12:Life long Learning

PSO1: The proficiency in mathematics, physical and management sciences helps to excel in the areas of planning, analysis related to Civil Engineering systems.

PSO2: Identify sustainable materials and technologies, code of practices in construction industry and transportation systems.

CO	РО	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
BCV	K-														
401	level					1 The			eller I	in the second		Same			
CO1	K3	3	3	-	-	-	-	-	-	-	- 2	-	1	3	2
CO2	K3	3	3	-	-	-	-	-	-	-	-	-	1	3	2
CO3	K3	3	3	-	-	-	-	-	-	-	-	-	1	3	2
CO4	K4	3	3	-	-	-	-	-	-	-	-	-	1	3	2
CO5	K4	3	3	-	-	-	-		-	~	-	-	-	3	2

Head -

IQAC Coordinator

Professor & Head Dept. of Civil Engineering K.S. Group of Institutions K.S. School of Engineering & Management Bangalore-560 062. ator Principal Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Management Bengaluru - 560 109