

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SESSION: 2023-2024 (ODD SEMESTER) I SESSIONAL TEST QUESTION PAPER SET-A

DS-1

USN

Degree : B.E Branch : AI & DS

Course Title : Data Structures and Applications

Duration : 90 Minutes

Semester : III

Course Code : BCS304 Date : 04/01/2024

Max Marks : 25

Note: Answer ONE full question from each part.

Q No.	Question Question Question	Marks	K- Level	CO mapping
	PART-A			
1(a)	Define Data structures. Draw its classification and explain in brief. List the basic operations that can be performed on Data structure?	5	Applying K3	CO1
(b)	Classify Structure and Union with suitable example and Explain self-referential structure.	5	Applying K3	CO1
(c)	Explain ADT of the polynomial. Define the 2 ways to represent polynomial in C and Show the structural representation for the given 2 polynomials, $A(x)=4x^{15}+3x^4+5$ and $B(x)=2x^{1000}+10$. Develop a function to add 2 polynomials.	5	Applying K3	CO1
	OR			
2(a)	Make use of stack to convert the following Infix expressions to Postfix expressions: i)2*3/(2-1)+5*3 ii)A+B*C/D-F+A^E	5	Applying K3	CO1
(b)	Define Recursion i) Find out A(2,1) using Ackerman's function and also write a recursive function for the same ii) Develop a recursive function for Tower of Hanoi.	5	Applying K3	CO1
(c)	Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized Define Multiple Stacks and Queues expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.	5	Applying K3	CO1
	PART-B			
3(a)	Define queue. Illustrate the operations performed on queue	5	Applying K3	CO2
(b)	Implement circular queue using dynamically allocated arrays.	5	Applying K3	CO2

OR					
4(a)	Define priority queue. Illustrate two ways of representation of a Priority Queue with an example.	5	Applying K3	CO2	
(b)	Illustrate Multiple Stacks and Queues	5	Applying K3	CO2	

Course Incharge

IQAC- Coordinator

HOD Principal

Dr. K. RAMA NARASIMHA

Principal/Director
Principal/Director
Bengaluru - 560 109

Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SESSION: 2023-2024 (ODD SEMESTER) I SESSIONAL TEST QUES FION PAPER SET-B

03-2

Degree

B.E

Branch : AI & DS

Course Title **Duration**

Data Structures and Applications
9.0 Minutes

USN

Semester : III

Course Code: BCS304

Date: 04/01/2024

Max Marks: 25

Note: Answer ONE full question from each part.

Q No.	Question	Marks	K- Level	CO mapping
	PART-A			
1(a)	Define Data structures. Give its classifications. Illustrate dynamic memory allocation functions in detail.	5	Applying K3	CO1
	Develop Fast transpose algorithm of Sparse Matrix. Identify the triplet form of Sparse matrix and identify the transpose of the given Matrix.		Applying K3	
	col 0 col 1 col 2 col 3 col 4 col 5			M
	row 0 15 0 0 22 0 15	14.00		
(b)	row 1 0 11 3 0 0 0 row 2 0 0 0 -6 0 0	5		CO1
וורפכוניי	row 3 0 0 0 0 0 0			
000.	row 4 91 0 0 0 0 0 0 0 row 5 0 0 28 0 0 0			
	Develop an algorithm for Knuth-Morris-Pratt Pattern Matching Algorithm and apply on the following Data.		Applying K3	
(c)	T=ababcabcabababd	5		CO1
	P1=ababd			
	OR		M. Maria	
2(a)	Develop a program for Evaluation of Postfix expression and apply it for the following data i) (2+3)*(2-(4+1))	5	Applying K3	COI

(b)	 Define Recursion i) Use Ackerman's function to evaluate A(1,2) and also write a recursive function for the same ii) Develop a recursive function for Tower of Hanoi using 3 discs. Apply the Bubble sort algorithm for the following Data? 	5	Applying K3 Applying	CO1		
(c)	5,1,4,2,8	5	К3	CO1		
	PART-B					
3(a)	Discuss the disadvantage of the ordinary queue and how it is solved using a circular queue? Develop insertion and deletion functions for circular queue.	5	Applying K3	CO2		
(b)	Illustrate Dequeue and its variants	5	Applying K3	CO2		
	OR					
4(a)	Define priority queue. Demonstrate in detail One-Way list representation of a Priority Queue with an example.	5	Applying K3	CO2		
(b)	Illustrate circular queue using dynamically allocated arrays.	5	Applying K3	CO2		

Course Incharge

IQAC- Coordinator

Principal 2

Dr. K. RAMA NARASIMHA
Principal/Director
K S School of Engineering and Management
Bengaluru - 560 109