SOFTWARE ENGINEERING

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - IV

Subject Code	15CS42	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS – 04

Course objectives: This course will enable students to

- Outline software engineering principles and activities involved in building large software programs.
- Identify ethical and professional issues and explain why they are of concern to software engineers.
- Describe the process of requirements gathering, requirements classification, requirements specification and requirements validation.
- Differentiate system models, use UML diagrams and apply design patterns.
- Discuss the distinctions between validation testing and defect testing.
- Recognize the importance of software maintenance and describe the intricacies involved in software evolution.
- Apply estimation techniques, schedule project activities and compute pricing.
- Identify software quality parameters and quantify software using measurements and metrics.
- List software quality standards and outline the practices involved.
- Recognize the need for agile software development, describe agile methods, apply agile practices and plan for agility.

Module 1		
	Hours	
Introduction: Software Crisis, Need for Software Engineering. Professional Software		
Development, Software Engineering Ethics. Case Studies.		
Software Processes: Models: Waterfall Model (Sec 2.1.1), Incremental Model		
(Sec		
2.1.2) and Spiral Model (Sec 2.1.3). Process activities.		
Requirements Engineering:		
Requirements Engineering Processes (Chap 4).		
Requirements Elicitation and Analysis (Sec 4.5). Functional and non-functional		
requirements (Sec 4.1). The software Requirements Document (Sec 4.2). Requirements		
Specification (Sec 4.3). Requirements validation (Sec 4.6). Requirements Management		
(Sec 4.7).		
Module 2		
System Models: Context models (Sec 5.1). Interaction models (Sec 5.2). Structural	11 Hours	
models (Sec 5.3). Behavioral models (Sec 5.4). Model-driven engineering (Sec 5.5).		
Design and Implementation : Introduction to RUP (Sec 2.4), Design Principles (Chap		
17). Object-Oriented design using the UML (Sec 7.1). Design patterns (Sec 7.2).		
Implementation issues (Sec 7.3). Open source development (Sec 7.4).		
Module 3		
Software Testing: Development testing (Sec 8.1), Test-driven development (Sec 8.2),	9 Hours	
Release testing (Sec 8.3), User testing (Sec 8.4). Test Automation (Page no 42, 70,212,		
231,444,695).		
Software Evolution: Evolution processes (Sec 9.1). Program evolution dynamics (Sec		
9.2). Software maintenance (Sec 9.3). Legacy system management (Sec 9.4).		

Module 4	
Project Planning : Software pricing (Sec 23.1). Plan-driven development (Sec 23.2).	10 Hours
Project scheduling (Sec 23.3): Estimation techniques (Sec 23.5). Quality management:	
Software quality (Sec 24.1). Reviews and inspections (Sec 24.3). Software measurement	
and metrics (Sec 24.4). Software standards (Sec 24.2)	
Module 5	
Agile Software Development: Coping with Change (Sec 2.3), The Agile Manifesto:	8 Hours
Values and Principles. Agile methods: SCRUM (Ref "The SCRUM Primer, Ver 2.0")	
and Extreme Programming (Sec 3.3). Plan-driven and agile development (Sec 3.2). Agile	
project management (Sec 3.4), Scaling agile methods (Sec 3.5):	

Course Outcomes: After studying this course, students will be able to:

- Design a software system, component, or process to meet desired needs within realistic constraints.
- Assess professional and ethical responsibility
- Function on multi-disciplinary teams
- Use the techniques, skills, and modern engineering tools necessary for engineering practice
- Analyze, design, implement, verify, validate, implement, apply, and maintain software systems or parts of software systems.

Graduate Attributes

- Project Management and Finance
- Conduct Investigations of Complex Problems
- Modern Tool Usage
- Ethics

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Listed topics only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)

2. The SCRUM Primer, Ver 2.0, http://www.goodagile.com/scrumprimer/scrumprimer20.pdf

Reference Books:

- 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill.
- 2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India

Web Reference for eBooks on Agile:

- 1. http://agilemanifesto.org/
- 2. http://www.jamesshore.com/Agile-Book/