
SOFTWARE ENGINEERING

(Effective from the academic year 2018 -2019)

SEMESTER – III

Course Code 18CS35 CIE Marks 40

Number of Contact Hours/Week 3:0:0 SEE Marks 60

Total Number of Contact Hours 40 Exam Hours 03

CREDITS –3

Course Learning Objectives: This course (18CS35) will enable students to:

 Outline software engineering principles and activities involved in building large software

programs.Identify ethical and professional issues and explain why they are of concern to software

engineers.

 Explain the fundamentals of object oriented concepts

 Describe the process of requirements gathering, requirements classification, requirements

specification and requirements validation. Differentiate system models, use UML diagrams and

apply design patterns.

 Discuss the distinctions between validation testing and defect testing.

 Recognize the importance of software maintenance and describe the intricacies involved in

software evolution.Apply estimation techniques, schedule project activities and compute pricing.

 Identify software quality parameters and quantify software using measurements and metrics. List

software quality standards and outline the practices involved.

Module 1 Contact

Hours

Introduction: Software Crisis, Need for Software Engineering. Professional Software

Development, Software Engineering Ethics. Case Studies.

Software Processes: Models: Waterfall Model (Sec 2.1.1), Incremental Model (Sec 2.1.2)

and Spiral Model (Sec 2.1.3). Process activities.

Requirements Engineering: Requirements Engineering Processes (Chap 4). Requirements

Elicitation and Analysis (Sec 4.5). Functional and non-functional requirements (Sec 4.1). The

software Requirements Document (Sec 4.2). Requirements Specification (Sec 4.3).

Requirements validation (Sec 4.6). Requirements Management (Sec 4.7).

RBT: L1, L2, L3

08

Module 2

What is Object orientation? What is OO development? OO Themes; Evidence for usefulness

of OO development; OO modelling history. Modelling as Design technique: Modelling;

abstraction; The Three models. Introduction, Modelling Concepts and Class Modelling:

What is Object orientation? What is OO development? OO Themes; Evidence for usefulness

of OO development; OO modelling history. Modelling as Design technique: Modelling;

abstraction; The Three models. Class Modelling: Object and Class Concept; Link and

associations concepts; Generalization and Inheritance; A sample class model; Navigation of

class models;

Textbook 2: Ch 1,2,3.

RBT: L1, L2 L3

08

Module 3

System Models: Context models (Sec 5.1). Interaction models (Sec 5.2). Structural models

(Sec 5.3). Behavioral models (Sec 5.4). Model-driven engineering (Sec 5.5).

Design and Implementation: Introduction to RUP (Sec 2.4), Design Principles (Chap 7).

Object-oriented design using the UML (Sec 7.1). Design patterns (Sec 7.2). Implementation

issues (Sec 7.3). Open source development (Sec 7.4).

RBT: L1, L2, L3

08

Module 4

Software Testing: Development testing (Sec 8.1), Test-driven development (Sec 8.2),

Release testing (Sec 8.3), User testing (Sec 8.4). Test Automation (Page no 212).

Software Evolution: Evolution processes (Sec 9.1). Program evolution dynamics (Sec 9.2).

Software maintenance (Sec 9.3). Legacy system management (Sec 9.4).

RBT: L1, L2, L3

08

Module 5

Project Planning: Software pricing (Sec 23.1). Plan-driven development (Sec 23.2). Project

scheduling (Sec 23.3): Estimation techniques (Sec 23.5). Quality management: Software

quality (Sec 24.1). Reviews and inspections (Sec 24.3). Software measurement and metrics

(Sec 24.4). Software standards (Sec 24.2)

RBT: L1, L2, L3

08

Course Outcomes: The student will be able to :

 Design a software system, component, or process to meet desired needs within realistic

constraints.

 Assess professional and ethical responsibility

 Function on multi-disciplinary teams

 Use the techniques, skills, and modern engineering tools necessary for engineering practice

 Analyze, design, implement, verify, validate, implement, apply, and maintain software systems or

parts of software systems

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Listed topics

only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)

2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2
nd

 Edition,

Pearson Education,2005.

Reference Books:

1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw

Hill.

2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India

DESIGN AND ANALYSIS OF ALGORITHMS

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Course Code 18CS42 CIE Marks 40

Number of Contact Hours/Week 3:2:0 SEE Marks 60

Total Number of Contact Hours 50 Exam Hours 03

CREDITS –4

Course Learning Objectives: This course (18CS42) will enable students to:

 Explain various computational problem solving techniques.

 Apply appropriate method to solve a given problem.

 Describe various methods of algorithm analysis.

Module 1 Contact

Hours

Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2), Analysis

Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3).

Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω), Theta notation (), and

Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms

with Examples (T1:2.2, 2.3, 2.4). Important Problem Types: Sorting, Searching, String

processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures:

Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4).

RBT: L1, L2, L3

10

Module 2

Divide and Conquer: General method, Binary search, Recurrence equation for divide and

conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort

(T1:4.1, 4.2), Strassen‟s matrix multiplication (T2:3.8), Advantages and Disadvantages of

divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3).

RBT: L1, L2, L3

10

Module 3

Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job

sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim‟s

Algorithm, Kruskal‟s Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's

Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).

Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4).

RBT: L1, L2, L3

10

Module 4

Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2).

Transitive Closure: Warshall‟s Algorithm, All Pairs Shortest Paths: Floyd's Algorithm,

Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford

Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).

RBT: L1, L2, L3

10

Module 5

Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets

problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Programme and

Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack

problem (T2:8.2, T1:12.2): LC Programme and Bound solution (T2:8.2), FIFO Programme

and Bound solution (T2:8.2). NP-Complete and NP-Hard problems: Basic concepts, non-

10

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

RBT: L1, L2, L3

Course Outcomes: The student will be able to :

 Describe computational solution to well known problems like searching, sorting etc.

 Estimate the computational complexity of different algorithms.

 Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.

Pearson.

2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014,

Universities Press

Reference Books:

1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford

Stein, 3rd Edition, PHI.

2. Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education).

