	per Choice Based C	N OF RC STRUCT redit System (CBCS) E STER – I		
Subject Code	18CSE12	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04		
Prerequisites:An un Course objectives:	dergraduate course	e on Design of RC str	uctures.	
The objective of this	ifferent types of s	e students to learn p tructures and to de	-	
Modules			Hours	Level
Module-1				
Design of R CDesign of flat s	slabs by yield line r slabs	nethod	10 Hours	L1, L2, L3, L4, L5
Module-2				
	or coffered floors tinuous beams wit	th redistribution of	10 Hours	L1, L2, L3, L4, L5
Module -3				
• Design of R C	Chimneys		10 Hours	L1, L2, L3, L4,
Module -4				
Design of R CDesign of R C			10 Hours	L1, L2, L4, L5
Module -5				
Formwork: Introduction, Requir for forms, choice Permissible stresse Shuttering for colum Erection of Formw	of formwork, Loa s for timber, Dea nns, Shuttering for	ads on formwork, sign of formwork,	10 Hours	L1, L2

concreting, Striking of forms. Recent developments in form	
work.	

Course outcomes:

On completion of this course, students are able to:

- 1. Achieve Knowledge of design and development of problem solving skills
- 2. Understand the principles of Structural Design.
- 3. Design and develop analytical skills.
- 4. Summarize the principles of Structural Design and detailing
- 5. Understands the structural performance.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

- 1. A Park and Paulay,, "Reinforced Reinforced and Prestressed Concrete"
- 2. Bungale. S. Taranath., "Structural Analysis and Design of Tall Buildings", McGraw Hill Book Company, New York, 1999
- 3. Hsu T. T. C. and Mo Y. L., "Unified Theory of Concrete Structures", John Wiley & Sons, 2010
- 4. Krishnamurthy, K.T., Gharpure S.C. and A.B. Kulkarni "Limit design of reinforced concrete structures", Khanna Publishers, 1985
- 5. UnnikrishnaPillai and Devdas Menon., "Reinforced concrete Design', Tata McGraw Hill PublishersCompany Ltd., New Delhi, 2006
- 6. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, 2007
- 7. Varghese. P. C., "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2000
- 8. Krishna Raju. N., "Advanced Reinforced Concrete Design", CBS Publishers & Distributors
- 9. Pillai S. U. and Menon D., "Reinforced Concrete Design", Tata McGraw-Hill, 3rd Ed, 1999

10. Shah.H.J, "Reinforced Concrete", Vol-1 and Vol-2, Charotar, 8th Edition – 2009 and 6th Edition – 2012 respectively.

11. Gambhir.M.L, "Design of Reinforced Concrete Structures", PHI Pvt. Ltd, New Delhi, 2008

[As]	per Choice Based C	RAL DYNAMICS Credit System (CBCS) IESTER – I	scheme]	
Subject Code	18CSE14	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04		
Prerequisites:Basics	s of Mechanics, Stre	ength of Materials, St	tructural Ana	lysis
Course objectives:				
The objective of thi Dynamics, To imple the same for free a characteristics of the	ement these principand forced vibration	ples through differen	nt methods a	and to apply
Modules			Teaching Hours	RBT Level
Module-1				
Introduction: Introd Engineering, Concep principle, principle principles . Dynamics of Si Mathematical model system, Free vibratic systems including m	ot of degrees of free of virtual displac ingle degree-of-fi ls of Single-degree- on response of dam	edom, D'Alembert's ement and energy reedom systems: of-freedom systems ped and undamped	10 Hours	L ₁ , L ₂ , L ₅
Module-2				
Response of Single-d loading including s transmissibility. Numerical methods systems – Duhamel i Principle of vil seismometer and acc	support motion, we applied to Single integral. bration measuri:	vibration isolation, e-degree-of-freedom	10 Hours	L ₃ , L ₄ , L ₅
Module -3				
Dynamics of Multi-d models of multi-degr	0		10 Hours	L_1, L_2, L_4, L_5

freedom systems – Natural frequencies and mode shapes – Orthogonality of modes.		
Module -4		
Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach.	10 Hours	L ₃ , L ₄ , L ₅
Module -5		
Approximate methods: Rayleigh's method, Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Flexural vibration of beams with different end conditions. Stiffness matrix, mass matrix (lumped and consistent).	10 Hours	L ₂ , L ₄
Course outcomes:		
On completion of this course, students are ableto:		
AchieveKnowledgeofdesignanddevelopmentofproblem	solvingskills.	

will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

- 1. Dynamics of Structures "Theory and Application toEarthquakeEngineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design ofBuildingStructures,Vinod Hosur, WILEY (India)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien: TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.

[As]	per Choice Based Cr	NGINEERING LAB-1 edit System (CBCS) scl STER – I	heme]	
Subject Code	18CSEL16	CIE Marks	4	10
Number of Lecture Hours/Week	03	SEE Marks	6	50
Total Number of Lecture Hours	42	Exam Hours	()3
	CREI	DITS – 02		
Prerequisites: Con Structural Dynamics		Special Concrete,	Structural	Analysis,
			-	design of
experiments, To inve different testing met	0 1	ance of structural elem ts.	ents. To eva Teaching	aluate the
different testing met	0 1		Teaching Hours	aluate the
different testing met	hods and equipmen	ts.	ents. To eva Teaching	aluate the
different testing met	hods and equipmen	ts. ⁄Iix design	Teaching Hours	aluate the
different testing met Modules 1. Experiments on C 2. Testing of beams	hods and equipment concrete, including M for deflection, flexur	ts. ⁄Iix design	Teaching Hours 12 Hrs	aluate the RBT Level L1, L2, L3, L4,
different testing met Modules 1. Experiments on C 2. Testing of beams i 3. Experiments on v Natural frequency an 4. Use of Non de	hods and equipment concrete, including M for deflection, flexur ribration of multi sto nd modes.	ts. ⁄lix design e and shear	Teaching Hours 12 Hrs 12 Hrs	aluate the RBT Level L1, L2,
different testing met Modules 1. Experiments on C 2. Testing of beams is 3. Experiments on v Natural frequency and 4. Use of Non des Rebound hammer, Profometer	hods and equipment concrete, including M for deflection, flexur ribration of multi sto nd modes. estructive testing Ultra sonic pulse	ts. Mix design e and shear prey frame models for (NDT) equipments –	Teaching Hours 12 Hrs 12 Hrs 12 Hrs 12 Hrs 12 Hrs 06Hrs	aluate the RBT Level L1, L2, L3, L4,

• Summarize the testing methods and equipment's.

		N OF STEEL ST		
[As		redit System (CBCS) E STER – II) scheme]	
Subject Code	18CSE21	-		40
Number of	1003621	CIE Marks		40
Lecture	04	SEE Marks		60
Hours/Week	01	ODD Marks		00
Total Number of				~ ^
Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04	·	
Prerequisites:				
-	π 1			
Engineering N Strength of M				
 Strength of M Structural An 				
Structural AnDesign of Stee	0			
	T1	1.1		
•	This course will ena			
	0	ne design provisions	for hot-rolled	and cold-
formed steel s	structures, including	g the main difference	es between the	em.
		g the main difference sions for design of		
2. Proficiency in columns	applying the provi	sions for design of	columns,bear	
 Proficiency in columns Design struct 	applying the provi		columns,bear	ns, beam-
 Proficiency in columns Design struct 	applying the provi	sions for design of	columns,bear	ns, beam-
 Proficiency in columns Design struct 	applying the provi	sions for design of	columns,bear	ns, beam-
 Proficiency in columns Design struct Modules Module-1 	applying the provi ural sections for ade	sions for design of	columns,bear	ns, beam- RBT Level
 2. Proficiency in columns 3. Design struct Modules Module-1 Laterally Unrestrai 	applying the provi ural sections for ade	sions for design of equate fireresistance	columns,bear	ns, beam-
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai 	applying the provi ural sections for ade ned Beams: of Beams, Factors	sions for design of equate fireresistance	columns,bear	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod 	applying the provi ural sections for ade ined Beams: of Beams, Factors le provisions, Design	sions for design of equate fireresistance s affecting lateral n Approach. Lateral	columns,bear Teaching Hors	ns, beam- RBT Level
 2. Proficiency in columns 3. Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of strength of strength of strength of stability 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams,	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams,	columns,bear	ns, beam- RBT Level
 2. Proficiency in columns 3. Design structs Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateralrestra 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, ious and icandnon-	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateral restrai uniformbeams – D 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr esign Examples. C	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of buckling strength of beams with discretelateralrestra uniformbeams – D Center, Warping, Un 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of buckling strength of buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 	applying the provi ural sections for ade aned Beams: of Beams, Factors be provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Conform and Non-Unit	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in 	applying the provi ural sections for ade aned Beams: of Beams, Factors be provisions, Design f Cantilever beams, th continu- ints, Mono-symmetr esign Examples. Conform and Non-Unit Frames:	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Con iform and Non-Unite Frames: and Long Beam - Co	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestratuniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a Slenderness Ratio a 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Conform and Non-Unit Frames: and Long Beam - Cond Axial Force on M	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a Slenderness Ratio a Biaxial bending, Str 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Con iform and Non-Unite Frames: and Long Beam - Co	sions for design of equate fireresistance s affecting lateral a Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear	ns, beam RBT Level L1,L2

Examples				
Module -3				
Steel Beams with Web Openings:		L3,L4		
Shape of the web openings, practical guide lines, and Force distribution and failure patterns. Analysis of beams with perforated thin and thick webs, Design of laterally restrained castellated beams for given sectional properties. Vierendeel girders (design for given analysis results)	10 Hours			
Module -4				
Cold formed steelsections:		L2,L3,L4		
Techniques and properties, Advantages, Typical profiles, Stiffened and unstiffened elements, Local buckling effects, effective section properties, IS 801& 811 code provisions- numerical examples, beam design, column design.	10 Hours			
Module -5				
Fire resistance:		L4,L5		
Fire resistance level, Period of Structural Adequacy, Properties of steel with temperature, Limiting Steel temperature, Protected and unprotected members, Methods of fire protection, Fire resistance Ratings. Numerical Examples.	10 Hours			
Course outcomes:				
After studying this course, students will be able to:				
 Able to understand behavior of Light gauge steel members Able to understand design concepts of cold formed/unrestrained beams Able to understand Fire resistance concept required for present days. Able to analyze beam column behavior 				
Question paper pattern:				
The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.				
Reference Books:				
 N. Subramanian, "Design of Steel Structures", Oxford Duggal,S.K. Design of Steel Structures, TataMcGraw- IS 800: 2007, IS 801-2010, IS 811-1987 BS5950 Part- 8, INSDAG Teaching Resource Chapter 11 to 20:www.st 	Hill			

6. SP 6 (5)-1980

FINITE ELEMENT METHOD OF ANALYSIS

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – II					
Subject Code	18CSE22	CIE Marks	40		
Number of Lecture Hours/Week	04	SEE Marks	60		
Total Number of Lecture Hours	50	Exam Hours	03		

CREDITS – 04

Prerequisites:

- Computational structural Mechanics
- Theory of Elasticity

Course objectives:

- To provide the fundamental concepts of the theory of the finite element method
- To develop proficiency in the application of the finite element method (modeling, analysis, and interpretation of results) to realistic engineering problems through the use of softwares

Modules	Teaching Hors	RBT Level
Module-1		
Basic concepts of elasticity, Kinematic and Static variables for various types of structural problems, Approximate methods of structural analysis – Rayleigh–Ritz method, Finite difference method, Finite element method. Variation method and minimizationof Energy approach of element formulation, Principles offinite element method, advantages and disadvantages, Finite element procedure, Finite elements used for one, two and three dimensional problems, C0, C1 and C2 type elements, Element aspect ratio, Mesh refinement vs. higher order elements,Numbering of nodes to minimize bandwidth.	10 Hours	L1, L2

Module-2		
Nodal displacement parameters, Convergence criterion, Compatibility requirements, Geometric invariance, Shape function,Polynomial form of displacement function, Generalized and Natural coordinates,Lagrangianinterpolation function, shape functions for one, two &three dimensional elements.	10 Hours	L1, L2, L4, L5
Module -3		
Isoparametric elements, Internal nodes and higher order elements, Serendipity and Lagrangianfamily of Finite Elements, Sub-parametric and Super- parametric elements, Condensation of internal nodes, Jacobian transformation Matrix, Development of strain-displacement matrix and stiffness matrix, consistent load vector, numericalintegration.	10 Hours	L1, L2, L4, L5
Module -4		
Application of Finite Element Method for the analysis of one & two dimensional problems: Analysis of plane trusses and beams, Application to planestress/strain, Axisymmetric problems using CST and Quadrilateral Elements	10 Hours	L1, L2, L3, L4, L5
Module -5		
Application to Plates and Shells, Non-linearity: material, geometric and combined non- linearity, Techniques for Non-linear Analysis.	10 Hours	L1, L2
 Course Outcome: After successful completion of this the course, students shate Explain the basic theory behind the finite element meters Formulate force-displacements relations for 2-D element Use the finite element method to analyze real structure Use a Finite Element based program for structural and Question paper pattern: The question paper will have ten questions; each question there will be two full questions or with a maximum of four a module, students will have to attend five full questions from 	thod. ents res. <u>alysis</u> on carries equ sub questions	from each

Reference Books:

- 1. Zeinkeiwich, O.C. and Tayler, R.L., The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann,2013
- 2. Krishnamoorthy,C.S.,FiniteElementAnalysis: Theory andprogramming, Tata McGraw Hill Publishing Co. Ltd., 2017
- 3. Desai, C., and Abel, J. F., Introduction to the Finite Element Method: A Numerical method for Engineering Analysis, East West Press Pvt. Ltd.,1972
- 4. Cook, R.D., Malkas, D.S. and Plesha., M.E., Concepts and applications of Finite Element Analysis, John Wiley and Sons., 2007
- 5. Reddy, J., An Introduction to Finite Element Methods, McGraw Hill Co., 2013
- 6. Bathe K J, Finite Element Procedures in Engineering Analysis, Prentice Hall
- 7. Shames, I.H. and Dym, C.J., Energy and Finite Element Methods in Structural Mechanics, McGraw Hill, New York, 1985

EARTHQUAKE RESISTANT STRUCTURES [As per Choice Based Credit System (CBCS) scheme] SEMESTER – II						
Subject Code	18CSE23	CIE Marks	40			
Number of Lecture Hours/Week	04	SEE Marks	60			
Total Number of Lecture Hours50Exam Hours03						
	CRED	DITS – 04				

Prerequisites:

• Structural Dynamics

Course objectives:

The objective of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures

Modules	Teaching Hors	RBT Level
Module-1		
Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification – Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.	10 Hours	L1, L2
Module-2		
The Response history and strong motion characteristics. Response Spectrum – elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design. Computation of seismic forces in multi-storied buildings – using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.	10 Hours	L2, L3, L4, L5

Module -3		
Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings duringearthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings – codal provisions.	10 Hours	L2, L4, L5
Module -4		
Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. Confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS1893. Structural behavior, design and ductile detailing of shear walls.	10 Hours	L2, L4, L5
Module -5		
Seismic response control concepts – Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.	10 Hours	L2, L5, L6
 Course Outcome:On completion of this course, students are able to: Achieve Knowledge of design and development of problem solving skills. Understand the principles of engineering seismology. 		

- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

1. Dynamics of Structures - Theory and Application to Earthquake Engineering-

2nd ed. – Anil K. Chopra, Pearson Education.

2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)

3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press.

4. Earthquake resistant design of structures - Pankaj Agarwal, Manish Shrikande - PHI India.

5. IS - 1893 (Part I): 2002, IS - 13920: 1993, IS - 4326: 1993, IS-13828: 1993

6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.

7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons.

	STRUCTURAL E	NGINEERING LAB-2		
[As <u>r</u>		edit System (CBCS) sc. STER – II	heme]	
Subject Code	18CSEL26	CIE Marks	4	10
Number of				
Lecture Hours/Week	03	SEE Marks	6	50
Total Number of Lecture Hours	42	Exam Hours	03	
	CREI	DITS – 02		
structures	ictural Analysis, S	Structural Dynamics	and Desig	gn of RC
Course objectives:				
To learn principles o To investigate the pe	0			
To design the structu Modules			Teaching	RBT
Modules 1. Static and Dy	ural components us	ing excel sheets design of Multistory	Teaching Hours 12 Hrs	RBT Level
Modules 1. Static and Dy Building struc	namic analysis and tures using any FE and Steel Tall stru	ing excel sheets design of Multistory	Hours	
Modules 1. Static and Dy Building struc 2. Design of RCC based software	namic analysis and tures using any FE and Steel Tall strue	ing excel sheets design of Multistory based software	Hours 12 Hrs	Level L1, L2,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo	namic analysis and tures using any FE and Steel Tall strue	ing excel sheets design of Multistory based software actures using any FE shells using any FE	Hours 12 Hrs 12 Hrs	Level L1, L2, L3, L4,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo software. 4. Preparation of	ural components us namic analysis and tures using any FE 2 and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u>	ing excel sheets design of Multistory based software actures using any FE shells using any FE	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs	Level L1, L2, L3, L4,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo software. 4. Preparation of Course outcomes:	ural components us namic analysis and tures using any FE C and Steel Tall struct olded plates and s <u>EXCEL sheets for s</u> On complete of this	ing excel sheets design of Multistory based software actures using any FE shells using any FE tructural design	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 13 Hrs	Level L1, L2, L3, L4, L5, L6
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of for software. 4. Preparation of Course outcomes: • Achieve Knowl	namic analysis and tures using any FE C and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u> On complete of this edge of design and o	ing excel sheets design of Multistory based software actures using any FE shells using any FE <u>tructural design</u> course the students wi	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 11 able to nming skills	Level L1, L2, L3, L4, L5, L6
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of for software. 4. Preparation of Course outcomes: • Achieve Knowl • Understand th	namic analysis and tures using any FE C and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u> On complete of this edge of design and o	ing excel sheets design of Multistory based software actures using any FE shells using any FE <u>tructural design</u> course the students wi development of program	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 11 able to nming skills	Level L1, L2, L3, L4, L5, L6

		CONCRETE		
[As t		redit System (CBCS) E STER – I	scheme]	
Subject Code	18CSE15	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CREI	DITS - 04		
Prerequisites:Know	ledge of Material Sc	ience and Concrete T	`echnology	
Course objectives:				
The objective of this	course is to make s	tudents to:		
• To differentiat and predict th	cial cement composite e between different e behaviour of spect	t types of concrete a	and Learn ch Teaching	naracterize
Modules			Hours	Level
Module-1				
Constituent materi of modern concrete admixtures and their Special cements: N modified hydraulic of calcium sulphate ba cements, shrinkage macro defect-free setting cements, to specifications, Meth ACI method and BS	e, Rheology, Mine r effect on propertie eed, Classifications cements, calcium a ased binders, calciu compensating (or) cements, phospha cheir Performance ods of mix proport	ral and Chemical s of concrete , Blended cements, luminate cements, am sulfo aluminate expansive cements, ate cements, fast and prescriptive	10 Hours	L1, L2, L5
Module-2				
0 0	ncrete: Introducti astic properties,	on, classification, durability, mix	10 Hours	L1, L2

High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.Self-compacting Concrete (SCC), General characteristics, Properties, microstructure. Robustness and methods of mix proportioning and applications		
Module -3		
Other concretes for special properties: High-volume fly ash concretes, geo-polymer concrete, pervious concrete, aerated concrete, ultrahigh performance concretes, Reactive powder concrete, Bacterial concrete, Heat resistant and refractory concrete. Their significance, materials, general consideration strength and durability aspects. Mixture proportioning and parameters in the development of Special concreting operations: Guniting and shotcreting, pre-placed aggregate, anti-washout concretes, concrete pumping, tremie placement for underwater applications.	10 Hours	L1, L2, L5
Module -4		
Fibre reinforced concrete: Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, Toughness and impact resistance, Elastic modulus, creep, and drying shrinkage, strength and behaviour in tension, compression and flexure, crack arrest and toughening mechanism, durability, applications.	10 Hours	L1, L2, L5
Ferro cement: Materials, mechanical properties, cracking of ferrocement, Types and methods of construction, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, durability, and applications.		
Module -5		
 High strength concretes: Materials and mix proportion, Microstructure, stress-strain relation, fracture, drying shrinkage, and creep. Mass concrete and Roller compacted concrete: Constituents, mix proportioning, properties in fresh and 	10 Hours	L1, L2

Different NDT techniques for performance evaluation of structures: Rebound hammer, Ultrasonic pulse velocity meter, Profometer, Ground Penetrating Radar (GPR), Core test, Carbonation and Corrosion assessment

Course outcomes:

On completion of this course, students are able to:

- Identify the functional role of ingredients of concrete and apply this knowledge to mix design philosophy
- Acquire and apply fundamental knowledge in the fresh and hardened properties of concrete for special properties.
- Evaluate the effect of the environment on service life performance, properties and failure of structural concrete and demonstrate techniques of measuring the Non Destructive Testing of concrete structure.
- Understand the concepts, mix proportioning and methods of special concreting operations.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asia, 2000
- 2. P. Kumar Mehta, Paul J.N. Monterio,ONCRETE:Microstructure,Properties and Materials", Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- Aitcin P.C. "High Performance Concrete"-E and FN, Spon London 1998 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 7. Rudnai.G., "Light Weight concrete"-Akademiaikiado, Budapest, 1963 9. http://qcin.org/CAS/RMCPC/
- 8. http://nptel.ac.in

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

Subject Code	18CSE13	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			

Prerequisites:Strength of Materials

Course objectives:

Course objectives: The objective of this course is to make students to learn principles of Analysis of Stress and Strain, To predict the stress-strain behaviour of continuum. To evaluate the stress and strain parameters and their inter relations of the continuum

		DDA
Modules	Teaching Hours	RBT Level
Module-1	110415	
Theory of Elasticity: Introduction: Definition of stress and strain and strain at a point, components of stress and strain at appoint of Cartesian and polar coordinates. Constitutive relations, equilibrium equations, compatibility equations and boundary conditions in 2-D and 3-D cases.	10 Hours	L1, L2
Module-2		
Transformation of stress and strain at a point,Principal stresses and principal strains, invariants ofstress and strain, hydrostatic and deviatric stress,spherical and deviatric strains max. shear strain.	10 Hours	L2, L3
Module -3		
Plane stress and plane strain: Airy's stress function approach to 2-D problems of elasticity, simple problems of bending of beams. Solution of axisymmetric problems, stress concentration due to the presence of a circular hole in plates.	10 Hours	L2, L3
Module -4		

Elementary problems of elasticity in three dimensions, stretching of a prismatic bar by its own weight, twist of circular shafts, torsion of non-circular sections, membrane analogy, Propagation of waves in solid media. Applications of finite difference equations in elasticity.	10 Hours	L2, L3, L4
Module -5		
Theory of Plasticity: Stress – strain diagram in simpletension, perfectly elastic, Rigid – Perfectly plastic, Linear work – hardening, Elastic Perfectly plastic, Elastic Linear work hardening materials, Failure theories, yield conditions, stress – space representation of yield criteria through Westergard stress space, Tresca and Von-Mises criteria of yielding	10 Hours	L1, L2
Course outcomes:		
 On completion of this course, students are able to: Achieve Knowledge of design and development of probl Understand the principles of stress-strain behaviour o Design and develop analytical skills. Describe the continuum in 2 and 3- dimensions Understand the concepts of elasticity and plasticity 	-	ills.
Question paper pattern: The question paper will have ten questions; each question there will be two full questions or with a maximum of fe each module, students will have to attend five full question	our sub quest	ions from
Reference Books:		
 Timoshenko &Goodier, "Theory of Elasticity", McGraw Srinath L.S., Advanced Mechanics of Solids, 10th p Publishing company, New Delhi, 1994. Sadhu Singh, "Theory of Elasticity", Khanna Publishe Verma P.D.S, "Theory of Elasticity", Vikas Publishing Chenn W.P and Hendry D.J, "Plasticity for Structure 	orint, Tata Mo rs Pvt. Ltd	

COMPUTATIONAL STRUCTURAL MECHANICS

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

			[
Subject Code	18CSE11	CIE Marks	40
Number of			
Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50	Exam Hours	03
Lecture Hours	50	Exam nours	
CREDITS – 04			

Prerequisites:

- Engineering Mechanics
- Strength of Materials
- Structural Analysis
- Matrix Algebra

Course objectives:

- To understand basic concepts of Matrix Methods of Structural Analysis
- To analyse the behavior of plane trusses, continuous beams, and portal frames

Modules	Teaching Hours	RBT Level
Module-1		
Basic concepts of structural analysis and methods of solving simultaneous equations: Introduction, Types of framed structures, Static and Kinematic Indeterminacy, Equilibrium equations, Compatibility conditions, Principle of superposition, Energy principles, Equivalent joint loads, Methods of solving linear simultaneous equations- Gauss elimination method, Cholesky method and Gauss-Siedal method.	10 Hours	L1, L2, L3
Module-2		
Fundamentals of Flexibility and Stiffness Methods: Concepts of stiffness and flexibility, Local and Global coordinates,Development of element flexibility and element stiffness matrices for truss, beam and grid elements, Force-transformation matrix,Development of global flexibility matrix for continuous beams, plane trusses and	10 Hours	L1, L2, L3 L4, L5

rigid plane frames, Displacement-transformation matrix,		
Development of global stiffness matrix for continuous		
beams, plane trusses and rigid plane frames.		
Module -3		
Analysis using Flexibility Method (including secondary		11 10
effects):	10 Hours	L1, L2, L3
Continuous beams, plane trusses and rigid plane frames	10 110013	L3 L4, L5
Module -4		
Analysis using Stiffness Method (including secondary effects): Continuous beams, plane trusses and rigid plane frames	10 Hours	L1, L2, L4, L5
Module -5		
Direct Stiffness Method:		
Stiffness matrix for truss element in local and global coordinates, Analysis of plane trusses, Stiffness matrix for beam element, Analysis of continuous beams and orthogonal frames.	10 Hours	L1, L2, L5
Course outcomes:		
Upon completing this course, the students will be able to:		
 Formulate force displacement relation by flexibility an Analyze the plane trusses, continuous beams a transformation approach Analyse the structures by direct stiffness method 		
Question paper pattern:		
The question paper will have ten questions; each question of there will be two full questions or with a maximum of four s each module, students will have to attend five full question	sub questions	from
Reference Books:		
 Weaver, W., and Gere, J.M., <i>Matrix Analysis of Fra</i> Publishers and distributors pvt. Ltd., 2004. Rajasekaran, S., and Sankarasubramanian, G., <i>Com</i> <i>Mechanics</i>, PHI, New Dehi, 2001. Martin, H, C., <i>Introduction to Matrix Methods of</i> McGraw-Hill, New York, 1966. 	putational S f Structural	Structural Analysis,
4. Rubinstein, M.F., Matrix Computer Analysis of St	ructures. Pre	ntice-Hal

- Rubinstein, M.F., *Matrix Computer Analysis of Structures*, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
- 5. Beaufait, F.W., Rowan, W. H., Jr., Hoadely, P. G., and Hackett, R. M.,

Computer Methods of Structural Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

6. Kardestuncer, H., *Elementary Matrix Analysis of Structures*, McGraw-Hill, New York, 1974.