

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I SESSIONAL TEST QUESTION PAPER 2019 – 20 ODD SEMESTER

SET-A

	USN					
--	-----	--	--	--	--	--

Degree

: B.E

Semester

Date

V

Branch

: Electrical and Electronics Engineering

: 4-9-2019

Course Title

: Signals and Systems

Course Code :

15EE54/17EE54

Duration

: 90 Minutes

Max Marks : 30

Note: Answer ONE full question from each part

Q. No.	Question	Marks	K Level	CO mapping
<u></u>	PART-A			
1(a)	Explain classification of signals.	5	Understanding K2	COI
(b)	Two signals $x(t)$ and $g(t)$ are shown. Sketch signal $x(t)$ in terms of $g(t)$. $x(t)$ $y(t)$ y	5	Applying K3	COI
(c)	A continuous time LTl system is represented by the impulse response $h(t) = e^{-3t}u(t-1)$. Determine whether it is (i) Memory less (ii) Causal and (iii) stable.	5	Applying K3	CO2
	OR			
2(a)	Differentiate between power and energy signal.	5	Understanding K2	COI
(b)	Sketch the following signals for given signal x(t). (i) $x(2(t-2))$ (ii) $x(2t-1)$	5	Applying K3	COI

(c)	Find the step response for the LTI system represented by the impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$	5	Applying K3	CO2
	PART-B			
3(a)	Determine whether the following systems are linear, time variant, causal, memory less and stable. $y(t) = x^2(t)$	5	Applying K3	COI
(b)	Determine whether the following signals are periodic, if periodic determine the fundamental period $x[n] = \cos\left(\frac{n\pi}{5}\right)\sin\left(\frac{n\pi}{3}\right)$	5	Applying K3	COI
(c)	Find convolution of two finite duration sequences $h(n) = a^n u(n)$ for all n and $x(n) = b^n u(n)$ for all n when $a \neq b$	5	Applying K3	CO2
	OR			
4(a)	Sketch x(t)y(t-1) for given signal x(t) and y(t). $ \begin{array}{cccccccccccccccccccccccccccccccccc$	5	Applying K3	COI
(b)	Sketch the signal $x(t) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)$	5	Applying K3	COI
(c)	Find the convolution integral of $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = u(t+2)$	5	Applying K3	CO2
(g				
C	Course In charge Hoad - Dept		/ <i><.6</i> c	ncipal

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING II SESSIONAL TEST QUESTION PAPER 2019 - 20 ODD SEMESTER

SET-A

USN								
-----	--	--	--	--	--	--	--	--

Degree

Duration

: B.E

: Electrical and Electronics Engineering

Semester Date

Branch Course Title

: Signals and Systems : 90 Minutes

: 16-10-2019

Course Code : 15EE54 / 17EE54

Max Marks : 30

Note: Answer ONE full question from each part

Q. No.	Question	Marks	K Level	CO mapping
	PART-A			
1(a)	Determine the natural response for the system described by the following differential equation. $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = 2x(t) + \frac{dx(t)}{dt};$ $y(0) = 3, \frac{dy(t)}{dt}\Big _{t=0} = -7$	5	K3 Applying	CO2
(b)	Determine the z-transform, the ROC, and the locations of poles and zeros of X(z) for the following signal. $x[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{-1}{3}\right)^n u[n]$	5	K3 Applying	CO3
(c)	State and prove differentiation property of the Z transform.	5	K3 Applying	CO3
)	OR			
2(4)	Draw direct form I and direct form II implementation for the system described by $y[n] - \frac{1}{4}y[n-1] - \frac{1}{5}y[n-2] = x[n] + 2x[n-1] + 3x[n-2]$	5	K3 Applying	CO2
(b)	Obtain the time domain signal corresponding to the following z-transform using partial fraction expansion method. $X(z) = \frac{1 + \frac{7}{6}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 + \frac{1}{3}z^{-1})}; \frac{1}{3} < z < \frac{1}{2}$	5	K3 Applying	CO3
(c)	Determine the input to the system if the output and impulse response are given by $y[n] = \frac{1}{3}u[n] + \frac{2}{3}\left(\frac{-1}{2}\right)^n u[n]$ $h[n] = \left(\frac{1}{2}\right)^n u[n]$	5	K3 Applying	СОЗ

	PART-B			
3(a)	Find the forced response of electrical system shown in figure. $ \begin{array}{c} 10 \\ y(t) \\ x(t) = \cos t \end{array} $	5	K3 Applying	CO2
(b)	Determine the impulse response of the system, $x[n] = \delta[n] + \frac{1}{4}\delta[n-1] - \frac{1}{6}\delta[n-2],$ $y[n] = \delta[n] - \frac{3}{4}\delta[n-1]$	5	K3 Applying	CO3
(e)	Find the Z transform of the following signal using appropriate properties. $x[n] = n\left(\frac{1}{2}\right)^n u[n] \cdot \left(\frac{1}{2}\right)^n u[n]$ OR	5	K3 Applying	CO3
4(a)	Draw the direct form 1 and direct form 11 implementation of the following system $2\dot{y}(t) - 3\ddot{y}(t) = 4x(t) - 3\dot{x}(t) + \ddot{x}(t)$	5	K3 Applying	CO2
(b)	State and prove time reversal property of the Z transform.	5	K3 Applying	CO3
(c)	Using appropriate properties find the z-transform of the following signal. $x[n] = n sin\left(\frac{\pi}{2}n\right)u[-n]$	5	K3 Applying	CO3

S

Course In charge

Head Dept

Principal

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING III SESSIONAL TEST QUESTION PAPER 2019 - 20 ODD SEMESTER SET-A

USN						
-----	--	--	--	--	--	--

Degree Branch

: B.E

Semester

Course Title

Electrical and Electronics Engineering

Date

: 25-11-2019 Course Code : 15EE54 / 17EE54

Duration

: Signals and Systems : 90 Minutes

Max Marks : 30

Note: Answer ONE full question from each part

Q. No.	Question	Marks	K Level	CO mapping
9	PART-A			
1(a)	Find the inverse Fourier transform of $X(jw) = \frac{5jw + 12}{(jw)^2 + 5jw + 6}$	5	Applying K3	CO4
(b)	Find the Fourier transform of the following signal $x(t) = u(t+1) - u(t-1)$	5	Applying K3	CO4
(c)	State and prove convolution property of DTFT.	5	Applying K3	CO5
	OR			
2(a)	State and prove time differentiation property of CTFT.	5	Applying K3	CO4
(b)	Find the Fourier transform of the signal using appropriate properties. $x(t) = \sin(\pi t)e^{-2t}u(t)$	5	Applying K3	CO4
(c)	Find the discrete time Fourier transform of the following signal $x[n] = 2^n u[-n]$	5	Applying K3	CO5
	PART-B			
3(a)	Prove that if $x(t) \stackrel{FT}{\longleftrightarrow} X(jw)$ then $\int_{-\infty}^{t} x(\tau) d\tau \stackrel{FT}{\longleftrightarrow} \frac{\chi(jw)}{jw} + \pi X(j0)\delta(w)$	5	Applying K3	CO4
(b)	The impulse response of a continuous time LTI system is given by $h(t) = \frac{1}{RC} e^{\frac{-t}{RC}} u(t)$ Find the frequency response and draw its spectrum.	5	Applying K3	CO4

(c)	Obtain the frequency response and impulse response of the system described by the difference equation $y[n] - \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = 3x[n] - \frac{3}{4}x[n-1].$	5	Applying K3	CO5
	OR			
4(a)	Find the time domain expression for the following $X(jw) = \frac{2jw + 1}{(2 + jw)^2}$	5	Applying K3	CO4
(b)	Find the frequency response and the impulse response of the system described by differential equation $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 4\frac{dx(t)}{dt} + x(t)$	5	Applying K3	CO4
(c)	State and prove frequency shift property of DTFT.	5	Applying K3	CO5

Principal