K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING # **CO-PO Mapping** | | | | CCTRONICS | | 0 1 1255 | 150 | | | | |--|--|-------------------------------|---|-----------------------|---------------------------------------|---------------|----------------------|--|--| | Type: | Core | | , TAY | | rse Code: 15EC | 73 | | | | | , | Γheory | Pro | nctical/Field Work/Allied | of Hours | T | | | | | | (Lecture Class) | | П | Activities Activities | | tal/Week | Total tea | Total teaching hours | | | | 5 0 | | | | | 50 | | | | | | | | | | Iarks | | | | | | | Internal Assessment | | | Examination | | Total | | Credits | | | | | 20 | 0 80 100 etives of the Course | | | | | 4 | | | | S L S | tudy and ana
earn the app | alysi
olica
er el | onstruction and working of
is of thyristor circuits with
tions of power devices in of
ectronics circuits under va- | differen
controlle | nt triggering co
ed rectifiers, co | nditions. | inverters. | | | | | completing th | the | urse, the students will be able characteristics of various p | | miconductor dev | vices and its | Understandin | | | | | control chai | acte | istics | | | | (K2) | | | | CO2 | Understand the working principle of SCRs, its characteristics, turn-on and turn-off methods and designing of gate triggering circuits. Applying (| | | | | | | | | | CO3 | Understand the working principle of thyristor circuits such as controlled rectifiers AC voltage controllers, its analysis, design and application. | | | | | | | | | | CO4 | Understand
DC converte | Applying (K3) | | | | | | | | | CO5 | Únderstand
knowledge d | Applying (K3) | | | | | | | | | | | | Syllabu | ıs Conte | ent | | | | | | Module 1 | | | | | | | CO1 | | | | Contr | ol Characte | ristic | eations of Power Electronics of Power Devices, typ | | | | 10 hrs | | | | Peripheral Effects. | | | | | | | PO1-3 | | | | Power Transistors: Power BJTs: Steady state characteristics. Power MOSFETs: | | | | | | | PO2-2 | | | | device operation, switching characteristics, IGBTs: device operation, output and | | | | | | | PO3-1 | | | | | | | s, di/dt and dv/dt limitation | | | | PO6-1
P12-1 | | | | | | | session the student will be a | | | | DCO1 3 | | | | 1. | | | cuss the different types of po | | | ees | PSO1-3 | | | | 2. | | | trol and steady state characte | | | | PSO2-1 | | | | 3. | Explain di | tere | nt power electronic circuits | and ide | entify the differ | ent types of | | | | power devices used in them. 4. Understand di/dt and dv/dt limitations and peripheral effect of power electronics. | Module 2 | | |--|---| | Thyristor - Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, Two transistor model of SCR, Gate Characteristics of SCR, Turn-On Methods, Turn-OFF Mechanism, Turn-OFF Methods: Natural and Forced Commutation - Class A and Class B types, Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit, UJT Firing Circuit. LO: At the end of this session the student will be able to Explain the working principle and operation of SCR. Explain the two-transistor model of SCR, methods of turn ON and turn OFF of SCR and its mechanism. Compare different types of commutation and identify different commutation circuits. Explain and design different types SCR firing circuits. | PO1-3 PO2-3 PO3-2 PO6-1 P12-1 PSO1-3 PSO2-1 | | Module 3 Controlled Rectifiers - Introduction, Principle of Phase-Controlled Converter Operation, Single-Phase Full Converter with RL Load, Single-Phase Dual Converters, Single-Phase Semi Converter with RL load. AC Voltage Controllers - Introduction, Principles of ON-OFF Control, Principle of Phase Control, Single-phase controllers with resistive and inductive loads. LO: At the end of this session the student will be able to Explain the principle of operation of phase controlled rectifiers and AC voltage controllers. Explain, analyze, and design controlled rectifiers and AC voltage controllers for both R and RL loads. Explain the working of Dual converters and able to identify different quadrant operation of dual converters. Explain the ON-OFF AC voltage controller. | CO3 10 hrs PO1-3 PO2-3 PO3-1 PO6-1 P12-1 PSO1-3 PSO2-1 | | Module 4 DC-DC Converters - Introduction, principle of step-down operation and it's analysis with RL load, principle of step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators, Chopper circuit design. LO: At the end of this session the student will be able to 1. Identify the different types of DC-DC converters and explain the principle of chopper circuit. 2. Explain the principle of operation of different types of DC-DC converters. 3. Write a note on performance parameters of converters. | CO4 10 hrs PO1-3 PO2-3 PO3-2 PO6-1 P12-1 PSO1-3 PSO2-1 | | 4. Explain switch mode regulators such as buck, boost, and buck boost regulators. | | | | |---|--------|--|--| | Module 5 | | | | | Pulse Width Modulated Inverters- Introduction, principle of operation, performance parameters, Single phase bridge inverters, voltage control of single | CO1 | | | | phase inverters, current source inverters, Variable DC-link inverter, Boost inverter, Inverter circuit design. | 10 hrs | | | | Static Switches: Introduction, Single phase AC switches, DC Switches, Solid state relays, Microelectronic relays. | | | | | | | | | | inverter circuit. 2. Write a note on performance parameters of inverters. | PSO1-3 | | | | 3. Explain the principle of operation of different types of voltage source, current source and variable DC-link inverters. | PSO2-1 | | | | 4. Explain static switches such as single phase AC switches, DC switches, solid state relays, and microelectronic relays. | | | | #### **Text Books:** - 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4th Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5. - 2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897 #### Reference Books: - 1. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009. - 2. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012. - 3. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005. #### **Useful Websites** - https://nptel.ac.in/courses/108105066/ - https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/download-course-materials/ - https://www.udemy.com/course/fundamentals-of-power-electronics-1/ #### **Useful Journals** - IEEE transaction on Power Electronics - IEEE transaction on Industrial Electronics - IEEE transaction on Power Delivery #### **Teaching and Learning Methods** - 1. Lecture class: 50 hrs - 2. Practical classes: - Assessment Type of test/examination: Written examination Continuous Internal Evaluation(CIE): 40 marks (Average of three tests will be considered) Semester End Exam (SEE): 100 marks (students have to answer all main questions) which will be reduced to 60 Marks. Test duration: 1:30 hrs Examination duration: 3 hrs ## CO to PO Mapping PO1: Science and engineering Knowledge PO7: Environment and Society PO2: Problem Analysis PO8: Ethics PO3: Design & Development PO9:Individual & Team Work PO4:Investigations of Complex Problems PO10: Communication PO5: Modern Tool Usage PO11:Project Management& Finance PO12:Life long Learning PO6: Engineer & Society ## CO to PO Mapping At the end of the Program, the students should: PSO1: Be able to acquire knowledge and apply concepts in the field of engineering and interdisciplinary subjects. PSO2: Be able to identify the existing problems, effectively utilize tools to provide solution, and disseminate the information. | СО | РО | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------| | 15EC
73 | K-
level | | | | | | | | | | | | | | | | CO1 | К3 | 3 | 2 | 1 | - | | 1 | - | - | - | - | - | 1 | 3 | 1 | | CO2 | K3 | 3 | 3 | 2 | - | - | 1 | - | - | - | ~ | - | 1 | 3 | 1 | | CO3 | K3 | 3 | 3 | 1 | - | - | 1 | - | - | - | - | - | 1 | 3 | 1 | | CO4 | K3 | 3 | 3 | 2 | - | - | 1 | - | - | - | - | - | 1 | 3 | 1 | | CO5 | K3 | 3 | 3 | 2 | - | - | 1 | - | - | - , | - | - | 1 | 3 | 1 | Faculty In Charge